Skip to main content
Log in

Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

The present study was undertaken to examine the possible roles of calcium (Ca2+) and silica (Si) in protection against oxidative damage due to Cd2+ toxicity in rice (Oryza sativa L.) seedlings grown in hydroponics. Rice seedlings raised for 12 days in hydroponics containing Cd(NO3)2 (75 μM) showed reduced growth; increase in the level of reactive oxygen species (ROS) (O2 ·− and H2O2), thiobarbituric acid reactive substances (TBARSs) and protein carbonylation; and increase in the activity of antioxidant enzymes—superoxide dismutase (SOD), catalase (CAT) and guaiacol peroxidase (GPX) compared to untreated controls. Exogenously added Ca2+ (2 mM) and Si (200 μM) significantly alleviated negative effect of Cd2+ by restoration of growth of the seedlings, suppression of Cd2+ uptake and restoration of root plasma membrane integrity. The levels of O2 ·−, H2O2, lipid peroxidation and protein carbonyls were much lower when Ca2+ and Si were added in the growth medium along with Cd2+ as compared to Cd-alone-treated seedlings. Ca2+ and Si lowered Cd-induced increase in SOD, GPX and APX activities while they elevated Cd-induced decline in CAT activity. Using histochemical staining of O2 ·− and H2O2 in leaf tissues, it was further confirmed that added Ca2+ and Si suppressed Cd-induced accumulation of O2 ·− and H2O2 in the leaves. The results suggest that exogenous application of Ca2+ and Si appears to be advantageous for rice plants in alleviating Cd2+ toxicity effects by reducing Cd2+ uptake, decreasing ROS production and suppressing oxidative damage. The observations indicate that Ca2+ and Si treatments can help in reducing Cd2+ toxicity in rice plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aidid SB, Okamoto H (1993) Responses of elongation growth rate, turgor pressure and cell wall extensibility of stem cells of Impatiens balsamina to lead, cadmium and zinc. Biometals 6:245–249

    Article  CAS  Google Scholar 

  • Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Mooren PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific Publication, Oxford, pp 285–344

    Google Scholar 

  • Andresen E, Küpper H (2013) Cadmium toxicity in plants. In: Sigel A, Sigel H, Sigel RKO (eds) Cadmium: from toxicity to essentiality. Metal Ions in Life Sciences 11:395–413

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assay and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Beers RF, Sizer IW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR (1985) Displacement of Ca2+ and Na+ form the plasma lemma root cells. Plant Physiol 79:207–211

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dat J, Vandenbeele S, Vranova E, Van Montagu M, Inze D, Van Breusegm F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    Article  CAS  PubMed  Google Scholar 

  • de Kok LJ, Kuiper PJC (1986) Effect of short-term dark incubation with chloride and selenate on the glutathione content of spinach leaf discs. Physiol Plant 68:477–482

    Article  Google Scholar 

  • Egley GH, Paul RN, Vaughn KC, Duke SO (1983) Role of peroxidase in the development of water impermeable seed coats in Sidaspinosa L. Planta 157:224–232

    Article  CAS  PubMed  Google Scholar 

  • Farzadfar S, Zarinkamar F, Modarres-Sanavy SAM, Hojati M (2013) Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants. Environ Sci Pollut Res 20:1413–1422

    Article  CAS  Google Scholar 

  • Frahry G, Schopfer P (2001) NADH-stimulated, cyanide-resistant superoxide production in maize coleoptiles analysed with a tetrazolium-based assay. Planta 212:175–183

    Article  CAS  PubMed  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unravelling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione disulphide using glutathione reductase and 2-vinylpyridine. Anal Biochem 6:207–212

    Article  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53(366):1–11

    Article  CAS  PubMed  Google Scholar 

  • Hayat Q, Hayat S, Irfan M, Ahmad A (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ Exp Bot 68:14–25

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Horst WJ, Fecht M, Naumann A, Wissemeier AH, Maier P (1999) Physiology of manganese toxicity and tolerance in Vigna unguiculata (L.) Walp. J Plant Nutr Soil Sci 162:263–274

    Article  CAS  Google Scholar 

  • Hossain MA, Nakano Y, Asada K (1984) Monodehydroascorbate reductase in spinach chloroplasts and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. Plant Cell Physiol 25:385–395

    CAS  Google Scholar 

  • Hossain MT, Ryuji M, Soga K, Wakabayashi K, Kamisaka S, Fuji S, Yamamoto R, Hoson T (2002) Growth promotion and increase in cell wall extensibility by silicon in rice and some Poaceae seedlings. J Plant Res 115:23–27

    Article  CAS  PubMed  Google Scholar 

  • Iwasaki K, Maier P, Fecht M, Horst WJ (2002) Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant Soil 238:281–288

    Article  CAS  Google Scholar 

  • Jana S, Choudhuri MA (1981) Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat Bot 12:345–354

    Article  Google Scholar 

  • Klapheck S, Fliegner W, Zimmer I (1994) Hydroxymethyl-phytochelatins [(gamma- glutamyl-cysteine)n,-serine] are metal-induced peptides of the Poaceae. Plant Physiol 104:1325–1332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law MY, Charles SA, Halliwell B (1983) Glutathione and ascorbic acid and spinach (Spinacea oleracea) chloroplasts: the effect of hydrogen peroxide and paraquat. Biochem J 210:899–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine RL, Williams J, Stadtman ER, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol 233:346–357

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Wong J, Wei L (2005) Silicon-mediated enhancement of cadmium tolerance in maize (Zea mays L.) grown in cadmium contaminated soil. Chemosphere 58:475–483

    Article  CAS  PubMed  Google Scholar 

  • Mishra HP, Fridovich I (1972) The role of superoxide anion in autooxidation of the epinephrine and sample assay for SOD. J Biol Chem 247:3170–3175

    Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  CAS  PubMed  Google Scholar 

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Ann Rev Plant Biol 58:459–481

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G (2006) Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ 29:409–425

    Article  CAS  PubMed  Google Scholar 

  • Polge C, Jaquinod M, Holzer F, Bourguignon J, Walling L (2009) Evidences for the existence in Arabidopsis thaliana of the proteasome proteolytic pathway activation in response to cadmium. J Biol Chem Mol Biol 284:35412–35424

    Article  CAS  Google Scholar 

  • Pompella A, Maellaro E, Casini AF et al (1987) Measurement of lipid peroxidation in vivo: a comparison of different procedures. Lipids 22:206–211

    Article  CAS  PubMed  Google Scholar 

  • Pyngrope S, Bhoomika K, Dubey RS (2013) Oxidative stress, protein carbonylation, proteolysis, and antioxidative defense system as a model for depicting water deficit tolerance in Indica rice seedlings. Plant Growth Regul 69:149–165

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Gomez JM, del Rio A, Sandalio LM (2002) Cadmium causes the oxidative modification of proteins in pea plants. Plant Cell Environ 25:677–686

    Article  CAS  Google Scholar 

  • Romero-Puertas MC, Rodriguez-Serrano M, Corpas FJ, Gomez M, del Rio LA, Sandalio LM (2004) Cd-induced subcellular accumulation of O2 and H2O2 in pea leaves. Plant Cell Environ 27:1122–1134

    Article  CAS  Google Scholar 

  • Sandalio L, Dalurzo H, Gomez M, Romero-Puertas M, del Rio L (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  PubMed  Google Scholar 

  • Sandalio LM, Rodriguez-Serrano M, del Rio LA, Romero-Puetas MC (2009) Reactive oxygen species and signalling in cadmium toxicity. In: del Rio LA, Puppo A (eds) Reactive oxygen species and plant signalling. Springer, Berlin, pp 175–189

    Chapter  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59:1011–1012

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T et al (2001) Cadmium-induced changes in antioxidative systems, hydrogen peroxide content and differentiation in scot pine (Pinus sylvestris) roots. Plant Physiol 127:887–892

    Article  PubMed Central  PubMed  Google Scholar 

  • Shah K, Kumar RG, Verma S, Dubey RS (2001) Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Sci 161:1135–1144

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2006) Cadmium uptake and its toxicity in higher plants. In: Khan NA, Samiullah (eds) Cadmium toxicity and tolerance in plants. Narosa Publishing House, New Delhi, pp 63–86

    Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanisms in plants under stressful conditions. J Bot. doi:http://dx.doi.org/10.1155/2012/217037

  • Shi QH, Bao ZY, Zhu ZJ, He Y, Qian QQ, Yu JQ (2005a) Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 66:1551–1559

    Article  CAS  PubMed  Google Scholar 

  • Shi XH, Zhang CC, Wang H, Zhang FS (2005b) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  • Shi G, Cai Q, Liu C, Wu L (2010) Silicon alleviates cadmium toxicity in peanut plants in relation to cadmium distribution and stimulation of antioxidative enzymes. Plant Growth Regul 61:45–52

    Article  CAS  Google Scholar 

  • Song A, Li Z, Zhang J, Xue G, Fan F, Liang Y (2009) Silicon enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172(1):74–83

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Dubey RS (2011) Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul 64:1–16

    Article  CAS  Google Scholar 

  • Talukdar D (2012) Exogenous calcium alleviates the impact of cadmium induced oxidative stress in Lens culinaris Medic. seedlings through modulation of antioxidant enzyme activities. J Crop Sci Biotech 15:325–334

    Article  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants, H2O2 accumulation in papillae and hypersensitive response during barley powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tian S, Lu L, Zhang J, Wang K, Brown P, He Z, Liang J, Yang X (2011) Calcium protects roots of Sedum alfredii H. against cadmium-induced oxidative stress. Chemosphere 84:63–69

    Article  CAS  PubMed  Google Scholar 

  • Ushimaru T, Kanematsu S, Shibasaka M, Tsuji H (1999) Effect of hypoxia on antioxidant enzymes in aerobically grown rice (Oryza sativa) seedlings. Physiol Plant 107:181–187

    Article  CAS  Google Scholar 

  • Wang Z, Xiao Y, Chen W, Tang K, Zhang L (2010) Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. J Integr Plant Biol 52:400–409

    Article  CAS  PubMed  Google Scholar 

  • Weatherley PE (1950) Studies in the water relation of cotton plant 1. The field measurement of water deficits in leaves. New Phytol 49:81–97

    Article  Google Scholar 

  • White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta Biomembr 1465:171–189

    Article  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu L, Dong Y, Fan Z, Kong J, Liu S, Bai X (2013) Effects of the application of exogenous NO at different growth stage on the physiological characteristics of peanut grown in Cd-contaminated soil. J Plant Interact. doi:10.1080/17429145. 2013.830780

    Google Scholar 

  • Yoshida S, Forno DA, Cock JH, Gomez KA (1976) Laboratory manual for physiological studies of rice, 3rd edn. International Rice Research Institute, Philippines, 83

    Google Scholar 

  • Zeng F, Zhao F, Qiu B, Ouyang Y, Wu F, Zhang G (2011) Alleviation of chromium toxicity by silicon addition in rice plants. Agric Sci China 10(8):1188–1196

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Banaras Hindu University for providing research facility to carry out this work.

Conflict of interest

The authors hereby declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Dubey.

Additional information

Handling Editor: Bhumi Nath Tripathi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, R.K., Pandey, P., Rajpoot, R. et al. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma 252, 959–975 (2015). https://doi.org/10.1007/s00709-014-0731-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-014-0731-z

Keywords

Navigation