Skip to main content
Log in

Effect of crack on the dynamic response of bidirectional porous functionally graded beams on an elastic foundation based on finite element method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The contribution provided in this study is to investigate the dynamic response of Euler–Bernoulli imperfect FG beams-cracked on Winkler-elastic foundation, considering pinned–pinned boundary condition. The equations are discretized with classical finite element method (h-FEM). The material properties are considered vary in the both; width and thickness directions of the beam, via power-law form. An approximate porosity model with uniform distribution was adopted. The cracked element stiffness is determined based on the reduction of the cross section of the bi-directional FG beam. While the elastic foundation Winkler-type has a longitudinal distribution and increases the system stiffness. The obtained numerical results in terms of dimensionless fundamental frequencies are compared with the results from previous studies for convergence studies. Case studies were conducted to analyze the influence of power law index, porosity values, crack depth, crack location, Winkler-elastic foundation parameters on the first three natural frequencies of the beam with pinned–pinned boundary condition. The results showed that the bi-directional distribution function has a significant role in approximating the values of frequencies. The current distribution function proved its eligibility in predicting the results of the dynamic behavior of beam structures with different models distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sayyad, A.S., Ghugal, Y.M.: Effect of thickness stretching on the static deformations, natural frequencies, and critical buckling loads of laminated composite and sandwich beams. J. Braz. Soc. Mech. Sci. Eng. (2018). https://doi.org/10.1007/S40430-018-1222-5

    Article  Google Scholar 

  2. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K., Tounsi, A.: A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation. Geomech. Eng. 12, 9–34 (2017). https://doi.org/10.12989/GAE.2017.12.1.009

    Article  Google Scholar 

  3. Slimane, S.A., Slimane, A., Guelailia, A., Boudjemai, A., Kebdani, S., Smahat, A., Mouloud, D.: Hypervelocity impact on honeycomb structure reinforced with bi-layer ceramic/aluminum facesheets used for spacecraft shielding. Mech. Adv. Mater. Struct.Struct. 29(25), 4487–4505 (2022)

    Article  Google Scholar 

  4. Bennai, R., et al.: On the wave dispersion and vibration characteristics of FG plates resting on elastic Kerr foundations via HSDT. Adv. Concr. Constr. 14(3), 169–183 (2022). https://doi.org/10.12989/acc.2022.14.3.169

    Article  MathSciNet  Google Scholar 

  5. Houari, A., Madani, K., El Ajrami, M., Belhouari, M., Campilho, R.D.S.G.: Analysis of the substrate nature on the strength of a single-lap joint. J. Braz. Soc. Mech. Sci. Eng. 45, 469–495 (2023). https://doi.org/10.1007/s40430-023-04397-2

    Article  Google Scholar 

  6. Aydogdu, M., Taskin, V.: Free vibration analysis of functionally graded beams with simply supported edges. Mater. Des. 28(5), 1651–1656 (2007). https://doi.org/10.1016/j.matdes.2006.02.007

    Article  Google Scholar 

  7. Simsek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des.. Eng. Des. 240(4), 697–705 (2010). https://doi.org/10.1016/j.nucengdes.2009.12.013

    Article  Google Scholar 

  8. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Bég, O., Mahmoud, S.R.: Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct.Struct. 18(2), 425–442 (2015). https://doi.org/10.12989/scs.2015.18.2.425

    Article  Google Scholar 

  9. Benadouda, M., Hassen, A.A., Tounsi, A., Bernard, F., Mahmoud, S.R.: An efficient shear deformation theory for wave propagation in functionally graded material beams with porosities. Earthq. Struct. 13(3), 255–265 (2017). https://doi.org/10.12989/eas.2017.13.3.255

    Article  Google Scholar 

  10. Hadji, L., Avcar, M., Zouatnia, N.: Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today Proc. (2022). https://doi.org/10.1016/J.MATPR.2021.12.485

    Article  Google Scholar 

  11. Eltaher, M.A., Abdelrahman, A.A., Al-Nabawy, A., Khater, M., Mansour, A.: Vibration of nonlinear graduation of nano Timoshenko beam considering the neutral axis position. Appl. Math. Comput.Comput. 235, 512–529 (2014). https://doi.org/10.1016/j.amc.2014.03.028

    Article  MathSciNet  Google Scholar 

  12. Eltaher, M.A., Khairy, A., Sadoun, A.M., Omar, F.A.: Static and buckling analysis of functionally graded Timoshenko nano-beams. Appl. Math. Comput.Comput. 229, 283–295 (2014). https://doi.org/10.1016/j.amc.2013.12.072

    Article  MathSciNet  Google Scholar 

  13. Xiang, H.J., Yang, J.: Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction. Compos. B Eng. 39(2), 292–303 (2008). https://doi.org/10.1016/j.compositesb.2007.01.005

    Article  Google Scholar 

  14. Reddy, J.: Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 59(11), 2382–2399 (2011). https://doi.org/10.1016/j.jmps.2011.06.008

    Article  MathSciNet  Google Scholar 

  15. Shafiei, N., Kazemi, M., Ghadiri, M.: Nonlinear vibration of axially functionally graded tapered microbeams. Int. J. Eng. Sci. 102, 12–26 (2016). https://doi.org/10.1016/j.ijengsci.2016.02.007

    Article  MathSciNet  Google Scholar 

  16. Alshorbagy, A.E., Eltaher, M.A., Mahmoud, F.F.: Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model. 35, 412–425 (2011)

    Article  MathSciNet  Google Scholar 

  17. Wattanasakulpong, N., Ungbhakorn, V.: Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerosp. Sci. Technol.. Sci. Technol. 32(1), 111–120 (2014). https://doi.org/10.1016/j.ast.2013.12.002

    Article  Google Scholar 

  18. Ebrahimi, F., Ghasemi, F., Salari, E.: Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities. Meccanica 51(1), 223–249 (2016). https://doi.org/10.1007/s11012-015-0208-y

    Article  MathSciNet  Google Scholar 

  19. Ebrahimi, F., Farazmandnia, N., Reza Kokaba, M., Mahesh, V.: Vibration analysis of porous magneto-electro-elastically actuated carbon nanotube-reinforced composite sandwich plate based on a refined plate theory. Eng. Comput.Comput. 37(2), 921–936 (2019). https://doi.org/10.1007/s00366-019-00864-4

    Article  Google Scholar 

  20. Ramteke, P.M., Panda, S.K., Sharma, N.: Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure. Steel Compos. Struct.Struct. 33, 865 (2019). https://doi.org/10.12989/SCS.2019.33.6.865

    Article  Google Scholar 

  21. Ramteke, P.M., Patel, B., Panda, S.K.: Time-dependent deflection responses of porous FGM structure including pattern and porosity. Int. J. Appl. Mech. (2020). https://doi.org/10.1142/S1758825120501021

    Article  Google Scholar 

  22. Fan, F., Cai, X., Sahmani, S., Safaei, B.: Isogeometric thermal postbuckling analysis of porous FGM quasi-3D nanoplates having cutouts with different shapes based upon surface stress elasticity. Compos. Struct.Struct. 262, 113604 (2021). https://doi.org/10.1016/J.COMPSTRUCT.2021.113604

    Article  Google Scholar 

  23. Ramteke, P.M., Patel, B., Panda, S.K.: Nonlinear eigen-frequency prediction of functionally graded porous structure with different grading patterns. Waves Random Complex Media. (2021). https://doi.org/10.1080/17455030.2021.2005850

    Article  Google Scholar 

  24. Beg, M.S., Khalid, H.M., Yasin, M.Y., Hadji, L.: Exact third-order static and free vibration analyses of functionally graded porous curved beam. Steel Compos. Struct.Struct. 39(1), 1–20 (2021)

    Google Scholar 

  25. Avcar, M., Hadji, L., Akan, R.: The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams. Geomech. Eng. 31(1), 99–112 (2022). https://doi.org/10.12989/GAE.2022.31.1.099

    Article  Google Scholar 

  26. Hadji, L., Bernard, F., Zouatnia, N.: Bending and free vibration analysis of porous-functionally-graded (PFG) beams resting on elastic foundations. Fluids Dyn. Mater. Process. 19(4), 2023 (2023). https://doi.org/10.32604/fdmp.2022.022327

    Article  Google Scholar 

  27. Mellal, F., Bennai, R., Avcar, M., Nebab, M., Atmane, H.A.: On the vibration and buckling behaviors of porous FG beams resting on variable elastic foundation utilizing higher-order shear deformation theory. Acta Mech. Mech. 234(9), 3955–3977n (2023). https://doi.org/10.1007/s00707-023-03603-5

    Article  Google Scholar 

  28. Nemat-Alla, M., Noda, N.: Edge crack problem in a semi-infinite FGM plate with a bi-directional coefficient of thermal expansion under two-dimensional thermal loading. Acta Mech. Mech. 144, 211–229 (2000)

    Article  Google Scholar 

  29. Asgari, M., Akhlaghi, M.: Natural frequency analysis of 2D-FGM thick hollow cylinder based on three-dimensional elasticity equations. Eur. J. Mech. A Solid 30(2), 72–81 (2011). https://doi.org/10.1016/j.euromechsol.2010.10.002

    Article  Google Scholar 

  30. Jamshidi, M., Arghavani, J.: Optimal design of two-dimensional porosity distribution in shear deformable functionally graded porous beams for stability analysis. Thin-Walled Struct. 120, 81–90 (2017). https://doi.org/10.1016/j.tws.2017.08.027

    Article  Google Scholar 

  31. Nguyen, D.K., Nguyen, Q.H., Tran, T.T., Bui, V.T.: Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech. Mech. 228(1), 141–155 (2017). https://doi.org/10.1007/s00707-016-1705-3

    Article  MathSciNet  Google Scholar 

  32. Li, L., Hu, Y.: Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Compos. Struct.Struct. 172, 242–250 (2017). https://doi.org/10.1016/j.compstruct.2017.03.097

    Article  Google Scholar 

  33. KARAMANLI, A.: Free vibration and buckling analysis of two directional functionally graded beams using a four-unknown shear and normal deformable beam theory. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 19(2), 375–406 (2018). https://doi.org/10.18038/aubtda.361095

    Article  Google Scholar 

  34. Bediz, B.: Three-dimensional vibration behavior of bi-directional functionally graded curved parallelepipeds using spectral Tchebychev approach. Compos. Struct.Struct. 191, 100–112 (2018). https://doi.org/10.1016/j.compstruct.2018.02.035

    Article  Google Scholar 

  35. Karamanli, A., Aydogdu, M.: Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mech. Based Des. Struct. Mach.Struct. Mach. 48(2), 164–191 (2020). https://doi.org/10.1080/15397734.2019.1627219

    Article  Google Scholar 

  36. Bensaid, I., Saimi, A., Civalek, Ö.: Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect. Mech. Adv. Mater. Struct.Struct. (2022). https://doi.org/10.1080/15376494.2022.2142342

    Article  Google Scholar 

  37. Ayhan, A.O.: Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. Int. J. Solids Struct.Struct. 44(25), 8579–8599 (2007). https://doi.org/10.1016/j.ijsolstr.2007.06.022

    Article  Google Scholar 

  38. Lu, C.F., Chen, W.Q., Xu, C.W., Lim, R.Q.E.: Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Solids Struct.Struct. 45(1), 258–275 (2008). https://doi.org/10.1016/j.ijsolstr.2007.07.018

    Article  Google Scholar 

  39. Ke, L.L., Yang, J., Kitipornchai, S., Xiang, Y.: Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mech. Adv. Mater. Struct.Struct. 16(6), 488–502 (2009). https://doi.org/10.1080/15376490902781175

    Article  Google Scholar 

  40. Lien, T.V.: Free vibration analysis of multiple cracked functionally graded Timoshenko beams. Latin Am. J. Solids Struct. 14(9), 1752–1766 (2017). https://doi.org/10.1590/1679-78253693

    Article  Google Scholar 

  41. Panigrahi, B., Pohit, G.: Study of non-linear dynamic behavior of open cracked functionally graded Timoshenko beam under forced excitation using harmonic balance method in conjunction with an iterative technique. Appl. Math. Model. 57, 248–267 (2018). https://doi.org/10.1016/j.apm.2018.01.022

    Article  MathSciNet  Google Scholar 

  42. Gayen, D., Chakraborty, D., Tiwari, R.: Finite element analysis for a functionally graded rotating shaft with multiple breathing cracks. Int. J. Mech. Sci. 134, 411–423 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.027

    Article  Google Scholar 

  43. Choudhary, J., Patle, B.K., Ramteke, P.M., Hirwani, C.K., Panda, S.K., Katariya, P.V.: Static and dynamic deflection characteristics of cracked porous FG panels. Int. J. Appl. Mech. (2022). https://doi.org/10.1142/S1758825122500764

    Article  Google Scholar 

  44. Saimi, A., Bensaid, I., Fellah, A.: Effect of crack presence on the dynamic and buckling responses of bidirectional functionally graded beams based on quasi-3D beam model and differential quadrature finite element method. Arch. Appl. Mech. (2023). https://doi.org/10.1007/s00419-023-02429-w

    Article  Google Scholar 

  45. Dahmane, M., Benadouda, M., Fellah, A., Saimi, A., Atmane, H.A., Bensaid, I.: Porosities-dependent wave propagation in bi-directional functionally graded cantilever beam with higher-order shear model. Mech. Adv. Mater. Struct.Struct. (2023). https://doi.org/10.1080/15376494.2023.2253546

    Article  Google Scholar 

  46. Fellah, A., Abdelhamid, H., Brahim, B., Saimi, A.: Study of the effect of an open transverse crack on the vibratory behavior of rotors using the h-p version of the finite element method. J. Solid Mech. 11(1), 181–200 (2019)

    Google Scholar 

  47. Hassaine, N., Touat, N., Dahak, M., Fellah, A., Saimi, A.: Study of crack’s effect on the natural frequencies of bi-directional functionally graded beam. Mech. Based Des. Struct. Mach.Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2113408

    Article  Google Scholar 

  48. Benferhat, R., Daouadji, T.H., Mansour, M.S., Hadji, L.: Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations. Earthq. Struct. 10, 1429–1449 (2016). https://doi.org/10.12989/EAS.2016.10.6.1429

    Article  Google Scholar 

  49. Barati, M.R., Sadr, M.H., Zenkour, A.M.: Buckling analysis of higher order graded smart piezoelectric plates with porosities resting on elastic foundation. Int. J. Mech. Sci. 117, 309–320 (2016). https://doi.org/10.1016/J.IJMECSCI.2016.09.012

    Article  Google Scholar 

  50. Atmane, H.A., Tounsi, A., Bernard, F.: Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int. J. Mech. Mater. Des. 13, 71–84 (2017). https://doi.org/10.1007/S10999-015-9318-X

    Article  Google Scholar 

  51. Nebab, M., Atmane, H.A., Bennai, R., Tounsi, A., Bedia, E.A.A.: Vibration response and wave propagation in FG plates resting on elastic foundations using HSDT. Struct. Eng. Mech. Int. J. 69, 511–525 (2019)

    Google Scholar 

  52. Mellal, F., Bennai, R., Nebab, M., Atmane, H.A., Bourada, F., Hussain, M., Tounsi, A., Abbes, B., Sidi, B., Abbes, A.: Investigation on the effect of porosity on wave propagation in FGM plates resting on elastic foundations via a quasi-3D HSDT. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1983235

    Article  Google Scholar 

  53. Atmane, R.A., Mahmoudi, N., Bennai, R., Atmane, H.A., Tounsi, A.: Investigation on the dynamic response of porous FGM beams resting on variable foundation using a new higher order shear deformation theory. Steel Compos. Struct.Struct. 39, 95–107 (2021). https://doi.org/10.12989/SCS.2021.39.1.095

    Article  Google Scholar 

  54. Giang, N.T., Hong, N.T.: Hygro-thermo-mechanical stability analysis of variable thickness functionally graded sandwich porous plates resting on variable elastic foundations using finite element method. J. Therm. Stress. 45, 641–668 (2022). https://doi.org/10.1080/01495739.2022.2089307

    Article  Google Scholar 

  55. Cong, P.H., Chien, T.M., Khoa, N.D., Duc, N.D.: Nonlinear thermomechanical buckling and post-buckling response of porous FGM plates using Reddy’s HSDT. Aerosp. Sci. Technol.. Sci. Technol. 77, 419–428 (2018). https://doi.org/10.1016/j.ast.2018.03.020

    Article  Google Scholar 

  56. Bardell, N.S.: An engineering application of the h-p version of the finite element method to the static analysis of a Euler-bernoulli beam. Comput. Struct.. Struct. 59(2), 195–211 (1996). https://doi.org/10.1016/0045-7949(95)00252-9

    Article  Google Scholar 

  57. Dahmane, M., Boutchicha, D., Adjlout, L.: One-way fluid structure interaction of pipe under flow with different boundary conditions. Mechanika 22(6), 495–503 (2016). https://doi.org/10.5755/j01.mech.22.6.13189

    Article  Google Scholar 

  58. Zahaf, S., Dahmane, M., Benkhettab, M., Soubih, M., Slimane, S.A., Boutchicha, D.: Numerical study of post-buckling of clamped-pinned pipe carrying fluid under different parameters. Curr. Res. Bioinform. 9, 35–44 (2020). https://doi.org/10.3844/ajbsp.2020.35.44

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouloud Dahmane.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahmane, M., Benadouda, M., Bennai, R. et al. Effect of crack on the dynamic response of bidirectional porous functionally graded beams on an elastic foundation based on finite element method. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03906-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03906-1

Navigation