Skip to main content
Log in

Effect of crack presence on the dynamic and buckling responses of bidirectional functionally graded beams based on quasi-3D beam model and differential quadrature finite element method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The contribution provided in this paper is to investigate the dynamic and buckling response of bidirectional graded material beams (BDFB) with transverse cracks, considering different boundary conditions. The stretch effect by means of a normal deformation in conjunction with the shear deformation influence is integrated for accurate results. The material properties of the beam are supposed to be dependent on the gradation pattern through the width and thickness directions via power-law form. Lagrange’s principle is employed in order to extract the governing equations of motion. The stiffness of the cracked beam element is computed based on the shrinking of the beam’s cross section. The Differential quadrature finite elements method is used as an effective and accurate tool to determine the buckling loads and natural frequencies of the BDFG beam. The numerical results are evaluated with those from earlier studies. Finally, several studies examples were done to examine the impact of the power-law gradation index, crack depth, and position for various boundary conditions on the critical buckling of the beam and natural frequencies. These investigations highlight the advantages of the bidirectional FG beam over the unidirectional FG and pure metallic beams under the presence of a crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The authors declare that the data are available within the article.

References

  1. Ahmed, F., Abdelhamid, H., Brahim, B., Ahmed, S.: Study of the Effect of an open transverse crack on the vibratory behavior of rotors using the h-p version of the finite element method. J. Solid Mech. 11(1), 181–200 (2019). https://doi.org/10.22034/jsm.2019.664228

    Article  Google Scholar 

  2. Ahmed, S., Abdelhamid, H., Ismail, B., Ahmed, F.: An differential quadrature finite element and the differential quadrature hierarchical finite element methods for the dynamics analysis of on board shaft. Eur. J. Comput. Mech. (2020). https://doi.org/10.13052/ejcm1779-7179.29461

    Article  MathSciNet  Google Scholar 

  3. Ariaei, A., Ziaei-Rad, S., Ghayour, M.: Repair of a cracked Timoshenko beam subjected to a moving mass using piezoelectric patches. Int. J. Mech. Sci. 52(8), 1074–1091 (2010). https://doi.org/10.1016/j.ijmecsci.2010.04.001

    Article  Google Scholar 

  4. Avcar, M., Hadji, L., Akan, R.: The influence of Winkler-Pasternak elastic foundations on the natural frequencies of imperfect functionally graded sandwich beams. Geomech. Eng. 31(1), 99–112 (2022). https://doi.org/10.12989/GAE.2022.31.1.099

    Article  Google Scholar 

  5. Avcar, M., Hadji, L., Civalek, Ö.: Natural frequency analysis of sigmoid functionally graded sandwich beams in the framework of high order shear deformation theory. Compos. Struct. 276, 114564 (2021). https://doi.org/10.1016/j.compstruct.2021.114564

    Article  Google Scholar 

  6. Ayhan, A.O.: Stress intensity factors for three-dimensional cracks in functionally graded materials using enriched finite elements. Int. J. Solids Struct. 44(25), 8579–8599 (2007). https://doi.org/10.1016/j.ijsolstr.2007.06.022

    Article  MATH  Google Scholar 

  7. Bediz, B.: Three-dimensional vibration behavior of bi-directional functionally graded curved parallelepipeds using spectral Tchebychev approach. Compos. Struct. 191, 100–112 (2018). https://doi.org/10.1016/j.compstruct.2018.02.035

    Article  Google Scholar 

  8. Bensaid, I., Saimi, A.: Dynamic investigation of functionally graded porous beams resting on viscoelastic foundation using generalised differential quadrature method. Aust. J. Mech. Eng. (2022). https://doi.org/10.1080/14484846.2021.2017115

    Article  Google Scholar 

  9. Bensaid, I., Saimi, A., Civalek, Ö.: Effect of two-dimensional material distribution on dynamic and buckling responses of graded ceramic-metal higher order beams with stretch effect. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2142342

    Article  Google Scholar 

  10. Bouzidi, I., Hadjoui, A., Fellah, A.: Dynamic analysis of functionally graded rotor-blade system using the classical version of the finite element method. Mech. Based Des. Struct. Mach. 49(7), 1080–1108 (2021). https://doi.org/10.1080/15397734.2019.1706558

    Article  Google Scholar 

  11. Chen, X.L., Liew, K.M.: Buckling of rectangular functionally graded material plates subjected to nonlinearly distributed in-plane edge loads [21_Publication in refereed journal]. Smart Mater. Struct. 13(6), 1430–1437 (2004). https://doi.org/10.1088/0964-1726/13/6/014

    Article  Google Scholar 

  12. Chondros, T.G., Dimarogonas, A.D.: Dynamic sensitivity of structures to cracks. J. Vib. Acoust. Stress Reliab. Des. 111(3), 251–256 (1989). https://doi.org/10.1115/1.3269849

    Article  Google Scholar 

  13. Chondros, T.G., Dimarogonas, A.D., Yao, J.: Vibration of a beam with a breathing crack. J. Sound Vib. 239(1), 57–67 (2001). https://doi.org/10.1006/jsvi.2000.3156

    Article  Google Scholar 

  14. Christides, S., Barr, A.D.S.: One-dimensional theory of cracked Bernoulli–Euler beams. Int. J. Mech. Sci. 26(11), 639–648 (1984). https://doi.org/10.1016/0020-7403(84)90017-1

    Article  Google Scholar 

  15. Dado, M.H.: A comprehensive crack identification algorithm for beams under different end conditions. Appl. Acoust. 51(4), 381–398 (1997). https://doi.org/10.1016/S0003-682X(97)00005-4

    Article  Google Scholar 

  16. Dimarogonas, A.D.: Vibration of cracked structures: a state of the art review. Eng. Fract. Mech. 55(5), 831–857 (1996). https://doi.org/10.1016/0013-7944(94)00175-8

    Article  Google Scholar 

  17. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based damage identification methods. Shock Vib. Dig. 30(2), 91–105 (1998)

    Article  Google Scholar 

  18. Gayen, D., Chakraborty, D., Tiwari, R.: Finite element analysis for a functionally graded rotating shaft with multiple breathing cracks. Int. J. Mech. Sci. 134, 411–423 (2017). https://doi.org/10.1016/j.ijmecsci.2017.10.027

    Article  Google Scholar 

  19. Gu, P., Asaro, R.J.: Cracks in functionally graded materials. Int. J. Solids Struct. 34(1), 1–17 (1997). https://doi.org/10.1016/0020-7683(95)00289-8

    Article  MATH  Google Scholar 

  20. Hadji, L., Avcar, M.: Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory. Adv. Nano Res. 10(3), 281–293 (2021). https://doi.org/10.12989/ANR.2021.10.3.281

    Article  Google Scholar 

  21. Hadji, L., Avcar, M., Civalek, Ö.: An analytical solution for the free vibration of FG nanoplates. J. Braz. Soc. Mech. Sci. Eng. 43(9), 418 (2021). https://doi.org/10.1007/s40430-021-03134-x

    Article  Google Scholar 

  22. Hadji, L., Avcar, M., Zouatnia, N.: Natural frequency analysis of imperfect FG sandwich plates resting on Winkler-Pasternak foundation. Mater. Today Proc. 53, 153–160 (2022). https://doi.org/10.1016/j.matpr.2021.12.485

    Article  Google Scholar 

  23. Hassaine, N., Touat, N., Dahak, M., Fellah, A., Saimi, A.: Study of crack’s effect on the natural frequencies of bi-directional functionally graded beam. Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2113408

    Article  Google Scholar 

  24. Houalef, I.E., Bensaid, I., Saimi, A., Cheikh, A.: An analysis of vibration and buckling behaviors of nano-composite beams reinforced with agglomerated carbon nanotubes via differential quadrature finite element method. Mech. Adv. Mater. Struct. (2023). https://doi.org/10.1080/15376494.2023.2185706

    Article  Google Scholar 

  25. Houalef, I.E., Bensaid, I., Saimi, A., Cheikh, A.: Free vibration analysis of functionally graded carbon nanotube-reinforced higher order refined composite beams using differential quadrature finite element method. Eur. J. Comput. Mech. 31(04), 505–538 (2023). https://doi.org/10.13052/ejcm2642-2085.3143

    Article  MathSciNet  Google Scholar 

  26. Karamanli, A.: Static behaviour of two-directional functionally graded sandwich beams using various beam theories. New Trends Math. Sci. 2, 112–147 (2017)

    Article  Google Scholar 

  27. Karamanli, A.: Free vibration and buckling analysis of two directional functionally graded beams using a four-unknown shear and normal deformable beam theory. Anadolu Univ. J. Sci. Technol. A Appl. Sci. Eng. 19(2), 375–406 (2018)

    Google Scholar 

  28. Karamanli, A., Aydogdu, M.: Structural dynamics and stability analysis of 2D-FG microbeams with two-directional porosity distribution and variable material length scale parameter. Mech. Based Des. Struct. Mach. 48(2), 164–191 (2020). https://doi.org/10.1080/15397734.2019.1627219

    Article  Google Scholar 

  29. Ke, L.-L., Yang, J., Kitipornchai, S., Xiang, Y.: Flexural vibration and elastic buckling of a cracked Timoshenko beam made of functionally graded materials. Mech. Adv. Mater. Struct. 16(6), 488–502 (2009). https://doi.org/10.1080/15376490902781175

    Article  Google Scholar 

  30. Li, L., Hu, Y.: Torsional vibration of bi-directional functionally graded nanotubes based on nonlocal elasticity theory. Compos. Struct. 172, 242–250 (2017). https://doi.org/10.1016/j.compstruct.2017.03.097

    Article  Google Scholar 

  31. Lien, T.V.: Free vibration analysis of multiple cracked functionally graded Timoshenko beams. Latin Am. J. Solids Struct. 14(9), 1752–1766 (2017). https://doi.org/10.1590/1679-78253693

    Article  Google Scholar 

  32. Lin, H.-P., Chang, S.-C.: Forced responses of cracked cantilever beams subjected to a concentrated moving load. Int. J. Mech. Sci. 48(12), 1456–1463 (2006). https://doi.org/10.1016/j.ijmecsci.2006.06.014

    Article  MATH  Google Scholar 

  33. Loya, J., López-Puente, J., Zaera, R., Fernández-Sáez, J.: Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J. Appl. Phys. 105(4), 044309 (2009). https://doi.org/10.1063/1.3068370

    Article  Google Scholar 

  34. Lü, C.F., Chen, W.Q., Xu, R.Q., Lim, C.W.: Semi-analytical elasticity solutions for bi-directional functionally graded beams. Int. J. Solids Struct. 45(1), 258–275 (2008). https://doi.org/10.1016/j.ijsolstr.2007.07.018

    Article  MATH  Google Scholar 

  35. Narkis, Y.: Identification of crack location in vibrating simply supported beams. J. Sound Vib. 172(4), 549–558 (1994). https://doi.org/10.1006/jsvi.1994.1195

    Article  MATH  Google Scholar 

  36. Nejad, M.Z., Hadi, A., Rastgoo, A.: Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory. Int. J. Eng. Sci. 103, 1–10 (2016). https://doi.org/10.1016/j.ijengsci.2016.03.001

    Article  MathSciNet  MATH  Google Scholar 

  37. Neves, A.C., Simões, F.M.F., Pinto da Costa, A.: Vibrations of cracked beams: discrete mass and stiffness models. Comput. Struct. 168, 68–77 (2016). https://doi.org/10.1016/j.compstruc.2016.02.007

    Article  Google Scholar 

  38. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, R.M.N., Soares, C.M.M.: Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique. Compos. Part B Eng. 44(1), 657–674 (2013). https://doi.org/10.1016/j.compositesb.2012.01.089

    Article  Google Scholar 

  39. Nguyen, D.K., Nguyen, Q.H., Tran, T.T., Bui, V.T.: Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech. 228(1), 141–155 (2017). https://doi.org/10.1007/s00707-016-1705-3

    Article  MathSciNet  MATH  Google Scholar 

  40. Panigrahi, B., Pohit, G.: Study of non-linear dynamic behavior of open cracked functionally graded Timoshenko beam under forced excitation using harmonic balance method in conjunction with an iterative technique. Appl. Math. Model. 57, 248–267 (2018). https://doi.org/10.1016/j.apm.2018.01.022

    Article  MathSciNet  MATH  Google Scholar 

  41. Ranjbaran, A., Ranjbaran, M.: New finite-element formulation for buckling analysis of cracked structures. J. Eng. Mech. 140(5), 04014014 (2014). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000734

    Article  Google Scholar 

  42. Rikards, R., Buchholz, F.G., Wang, H.: Finite element analysis of delamination cracks in bending of cross-ply laminates. Mech. Compos. Mater. Struct. 2(4), 281–294 (1995). https://doi.org/10.1080/10759419508945847

    Article  Google Scholar 

  43. Shaat, M., Akbarzadeh Khorshidi, M., Abdelkefi, A., Shariati, M.: Modeling and vibration characteristics of cracked nano-beams made of nanocrystalline materials. International J. Mech. Sci. (2016). https://doi.org/10.1016/j.ijmecsci.2016.07.037

    Article  Google Scholar 

  44. Shirazizadeh, M.R., Shahverdi, H.: An extended finite element model for structural analysis of cracked beam-columns with arbitrary cross-section. Int. J. Mech. Sci. 99, 1–9 (2015). https://doi.org/10.1016/j.ijmecsci.2015.05.002

    Article  Google Scholar 

  45. Şimşek, M.: Bi-directional functionally graded materials (BDFGMs) for free and forced vibration of Timoshenko beams with various boundary conditions. Compos. Struct. 133, 968–978 (2015). https://doi.org/10.1016/j.compstruct.2015.08.021

    Article  Google Scholar 

  46. Şimşek, M.: Buckling of Timoshenko beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions. Compos. Struct. 149, 304–314 (2016). https://doi.org/10.1016/j.compstruct.2016.04.034

    Article  Google Scholar 

  47. Trinh, L.C., Vo, T.P., Thai, H.-T., Nguyen, T.-K.: Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions. Compos. Part B Eng. 134, 225–245 (2018). https://doi.org/10.1016/j.compositesb.2017.09.054

    Article  Google Scholar 

  48. Van Vinh, P.: Static bending analysis of functionally graded sandwich beams using a novel mixed beam element based on first-order shear deformation theory. Forces Mech. 4, 100039 (2021). https://doi.org/10.1016/j.finmec.2021.100039

    Article  Google Scholar 

  49. Van Vinh, P., Avcar, M., Belarbi, M.-O., Tounsi, A., Quang Huy, L.: A new higher-order mixed four-node quadrilateral finite element for static bending analysis of functionally graded plates. Structures 47, 1595–1612 (2023). https://doi.org/10.1016/j.istruc.2022.11.113

    Article  Google Scholar 

  50. Van Vinh, P., Belarbi, M.-O., Avcar, M., Civalek, Ö.: An improved first-order mixed plate element for static bending and free vibration analysis of functionally graded sandwich plates. Arch. Appl. Mech. (2023). https://doi.org/10.1007/s00419-022-02359-z

    Article  Google Scholar 

  51. Vinh, P.V., Son, L.T.: A new first-order mixed beam element for static bending analysis of functionally graded graphene oxide powder-reinforced composite beams. Structures 36, 463–472 (2022). https://doi.org/10.1016/j.istruc.2021.12.032

    Article  Google Scholar 

  52. Vo, T.P., Thai, H.-T., Nguyen, T.-K., Inam, F., Lee, J.: Static behaviour of functionally graded sandwich beams using a quasi-3D theory. Compos. Part B Eng. 68, 59–74 (2015). https://doi.org/10.1016/j.compositesb.2014.08.030

    Article  Google Scholar 

  53. Wang, Z.-H., Wang, X.-H., Xu, G.-D., Cheng, S., Zeng, T.: Free vibration of two-directional functionally graded beams. Compos. Struct. 135, 191–198 (2016). https://doi.org/10.1016/j.compstruct.2015.09.013

    Article  Google Scholar 

  54. Xing, Y., Liu, B.: High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int. J. Numer. Methods Eng. 80(13), 1718–1742 (2009). https://doi.org/10.1002/nme.2685

    Article  MathSciNet  MATH  Google Scholar 

  55. Yang, M., Xuan, H., Xiong, W., Liu, D., Zhou, Y., Zhang, W.: Analytical bending stiffness model of composite shaft with breathing fatigue crack. Mech. Adv. Mater. Struct. (2022). https://doi.org/10.1080/15376494.2022.2092794

    Article  Google Scholar 

  56. Yang, X.F., Swamidas, A.S.J., Seshadri, R.: Crack identification in vibrating beams using the energy method. J. Sound Vib. 244(2), 339–357 (2001). https://doi.org/10.1006/jsvi.2000.3498

    Article  Google Scholar 

  57. Zhanqi, C., Zheng, Z.: Fracture analysis of a functionally graded strip under plane deformation. Acta Mech. Sol. Sin. 19(2), 114–121 (2006). https://doi.org/10.1007/s10338-006-0613-9

    Article  Google Scholar 

  58. Zozulya, V.V.: A higher-order theory for functionally graded beams based on Legendre’s polynomial expansion. Mech. Adv. Mater. Struct. 24(9), 745–760 (2017). https://doi.org/10.1080/15376494.2016.1196780

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Saimi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saimi, A., Bensaid, I. & Fellah, A. Effect of crack presence on the dynamic and buckling responses of bidirectional functionally graded beams based on quasi-3D beam model and differential quadrature finite element method. Arch Appl Mech 93, 3131–3151 (2023). https://doi.org/10.1007/s00419-023-02429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-023-02429-w

Keywords

Navigation