Skip to main content
Log in

In-plane bending vibration of L-shaped cantilever nanobeams carrying a tip nanoparticle by nonlocal elasticity

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Some arms of nanorobots display L-shaped structures. The transverse free bending vibration of an L-shaped cantilever nanobeam carrying a tip nanoparticle is investigated. Based on the nonlocal elasticity, the nonlocal parameter is introduced to capture the size effect of the mechanical behavior of the cantilever–mass system. The frequency equation is deduced analytically. Exact resonance frequencies of the L-shaped nanocantilever–mass system are numerically evaluated and compared with their corresponding values of the macro-scale L-shaped cantilever–mass system. The numerical results show that the nonlocal parameter declines the resonance frequencies. If removing the nonlocal parameter, our results reduce to the resonance frequencies of transverse bending vibration of L-shaped cantilevers with an attached tip mass. The effects of the nonlocal parameter, the ratio of the attached mass to the structure mass, the length ratio of two members of the L-shaped cantilever–mass system on the resonance frequencies are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Karnovsky, I.A., Lebed, O.I.: Formulas for structural dynamics: tables, graphs and solutions. McGraw-Hill, New York (2004)

    Google Scholar 

  2. Pilkey, W.D., Pilkey, W.D., Pilkey, W.D.: Formulas for stress, strain, and structural matrices. John Wiley & Sons, New Jersey (2005)

    Google Scholar 

  3. Blevins, R.D.: Formulas for Dynamics Acoustics and Vibration. John Wiley & Sons, Hoboken (2016)

    Google Scholar 

  4. Laura, P.A.A., Gutierrez, R.H.: Vibrations of an elastically restrained cantilever beam of varying cross section with tip mass of finite length. J. Sound Vib. 108(1), 123–131 (1986)

    Article  ADS  Google Scholar 

  5. Naguleswaran, S.: Transverse vibrations of an Euler–Bernoulli uniform beam carrying several particles. Int. J. Mech. Sci. 44, 2463–2478 (2002)

    Article  Google Scholar 

  6. Wang, C.Y., Wang, C.M.: Exact vibration solution for exponentially tapered cantilever with tip mass. J. Vib. Acoust. 134, 041012 (2012)

    Article  Google Scholar 

  7. Matt, C.F.T.: Simulation of the transverse vibrations of a cantilever beam with an eccentric tip mass in the axial direction using integral transforms. Appl. Math. Model. 37(22), 9338–9354 (2013)

    Article  MathSciNet  Google Scholar 

  8. Shi, W., Li, X.-F., Lee, K.Y.: Transverse vibration of free–free beams carrying two unequal end masses. Int. J. Mech. Sci. 90, 251–257 (2015)

    Article  Google Scholar 

  9. Shi, W., Shen, Z.B., Peng, X.L., Li, X.F.: Frequency equation and resonant frequencies of free–free Timoshenko beams with unequal end masses. Int. J. Mech. Sci. 115, 406–415 (2016)

    Article  Google Scholar 

  10. Garcia-Sanchez, D., San Paulo, A., Esplandiu, M., Perez-Murano, F., Forro, L., Aguasca, A., Bachtold, A.: Mechanical detection of carbon nanotube resonator vibrations. Phys. Rev. Lett. 99(8), 85501 (2007)

    Article  ADS  Google Scholar 

  11. Chowdhury, R., Adhikari, S., Mitchell, J.: Vibrating carbon nanotube based bio-sensors. Physica E 42(2), 104–109 (2009)

    Article  ADS  Google Scholar 

  12. Mehdipour, I., Barari, A., Domairry, G.: Application of a cantilevered SWCNT with mass at the tip as a nanomechanical sensor. Comput. Mater. Sci. 50(6), 1830–1833 (2011)

    Article  Google Scholar 

  13. Adhikari, S., Khodaparast, H.H.: A multimodal approach for simultaneous mass and rotary inertia sensing from vibrating cantilevers. Physica E 125, 114366 (2021)

    Article  Google Scholar 

  14. Reddy, J.: Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 45(2), 288–307 (2007)

    Article  Google Scholar 

  15. Lim, C., Zhang, G., Reddy, J.: A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. J. Mech. Phys. Solids 78, 298–313 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shaat, M., Ghavanloo, E., Fazelzadeh, S.A.: Review on nonlocal continuum mechanics: physics, material applicability, and mathematics. Mech. Mater. 150, 103587 (2020)

    Article  Google Scholar 

  17. Aydogdu, M.: A general nonlocal beam theory: its application to nanobeam bending, buckling and vibration. Physica E 41(9), 1651–1655 (2009)

    Article  ADS  Google Scholar 

  18. Murmu, T., Adhikari, S., Wang, C.Y.: Torsional vibration of carbon nanotube–buckyball systems based on nonlocal elasticity theory. Physica E 43(6), 1276–1280 (2011)

    Article  ADS  Google Scholar 

  19. Li, X.B., Li, L., Hu, Y.J., Ding, Z., Deng, W.M.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017)

    Article  Google Scholar 

  20. Li, X.-F., Shen, Z.-B., Lee, K.Y.: Axial wave propagation and vibration of nonlocal nanorods with radial deformation and inertia. Z. Angew. Math. Mech. 97(5), 602–616 (2017)

    Article  MathSciNet  Google Scholar 

  21. Xu, X.-J.: Free vibration of nonlocal beams: boundary value problem and a calibration method. Thin-Wall. Struct. 161, 107423 (2021)

    Article  Google Scholar 

  22. Lee, H.-L., Hsu, J.-C., Chang, W.-J.: Frequency shift of carbon-nanotube-based mass sensor using nonlocal elasticity theory. Nanoscale Res. Lett. 5(11), 1774–1778 (2010)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  23. Shen, Z.B., Sheng, L.P., Li, X.F., Tang, G.J.: Nonlocal Timoshenko beam theory for vibration of carbon nanotube-based biosensor. Physica E 44(7–8), 1169–1175 (2012)

    Article  ADS  Google Scholar 

  24. Shen, Z.-B., Li, X.-F., Sheng, L.-P., Tang, G.-J.: Transverse vibration of nanotube-based micro-mass sensor via nonlocal Timoshenko beam theory. Comput. Mater. Sci. 53(1), 340–346 (2012)

    Article  Google Scholar 

  25. Shen, Z.B., Tang, H.L., Li, D.K., Tang, G.J.: Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal Kirchhoff plate theory. Comput. Mater. Sci. 61, 200–205 (2012)

    Article  Google Scholar 

  26. Elishakoff, I., Challamel, N., Soret, C., Bekel, Y., Gomez, T.: Virus sensor based on single-walled carbon nanotube: improved theory incorporating surface effects. Philos. Trans. R. Soc. A 371(1993), 20120424 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, X.-F., Tang, G.-J., Shen, Z.-B., Lee, K.Y.: Resonance frequency and mass identification of zeptogram-scale nanosensor based on the nonlocal beam theory. Ultrasonics 55, 75–84 (2015)

    Article  PubMed  Google Scholar 

  28. Zarepour, M., Hosseini, S.A., Ghadiri, M.: Free vibration investigation of nano mass sensor using differential transformation method. Appl. Phys. A 123, 181 (2017)

    Article  ADS  Google Scholar 

  29. Chen, D.Q., Sun, D.L., Li, X.F.: Surface effects on resonance frequencies of axially functionally graded Timoshenko nanocantilevers with attached nanoparticle. Compos. Struct. 173, 116–126 (2017)

    Article  Google Scholar 

  30. Hosseini, S.A.H., Rahmani, O.: Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl. Phys. A 122(3), 169 (2016)

    Article  ADS  Google Scholar 

  31. Barretta, R., de Sciarra, F.M., Vaccaro, M.S.: On nonlocal mechanics of curved elastic beams. Int. J. Eng. Sci. 144, 103140 (2019)

    Article  MathSciNet  Google Scholar 

  32. Zhang, P., Qing, H.: Exact solutions for size-dependent bending of Timoshenko curved beams based on a modified nonlocal strain gradient model. Acta Mech. 231(12), 5251–5276 (2020)

    Article  MathSciNet  Google Scholar 

  33. Peng, X.L., Li, X.F., Tang, G.J., Shen, Z.B.: Effect of scale parameter on the deflection of a nonlocal beam and application to energy release rate of a crack. Z. Angew. Math. Mech. 95, 1428–1438 (2015)

    Article  MathSciNet  Google Scholar 

  34. Gurgoze, M.: On the dynamic analysis of a flexible L-shaped structure. J. Sound Vib. 211(4), 683–688 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zhu, Y., Qiu, J., Tani, J.: Simultaneous optimization of a two-link flexible robot arm. J. Robot. Syst. 18(1), 29–38 (2001)

    Article  Google Scholar 

  36. Morales, C.A.: L-shaped structure mass and stiffness matrices by substructure synthesis. Meccanica 45(2), 279–282 (2010)

    Article  Google Scholar 

  37. Bachoo, R.: Free vibration analysis of nonsymmetrically laminated cross-ply L-shaped frames. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 235(9), 2112–2127 (2021)

    Google Scholar 

  38. Oguamanam, D.C.D., Hansen, J.S.: Vibration of arbitrarily oriented two-member open frames with tip mass. J. Sound Vib. 209(4), 651–669 (1998)

    Article  ADS  Google Scholar 

  39. Heppler, G.R., Oguamanam, D.C.D., Hansen, J.S.: Vibration of a two-member open frame. J. Sound Vib. 263, 299–317 (2003)

    Article  ADS  Google Scholar 

  40. Erturk, A., Renno, J.M., Inman, D.J.: Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J. Intell. Mater. Syst. Struct. 20(5), 529–544 (2008)

    Article  Google Scholar 

  41. Li, H., Liu, D., Wang, J., Shang, X., Hajj, M.R.: Broadband bimorph piezoelectric energy harvesting by exploiting bending-torsion of L-shaped structure. Energy Convers. Manag. 206, 112503 (2020)

    Article  Google Scholar 

  42. Li, J., Papadopoulos, C., Xu, J.: Growing Y-junction carbon nanotubes. Nature 402, 253–254 (1999)

    Article  ADS  Google Scholar 

  43. Terrones, M., Banhart, F., Grobert, N., Charlier, J.-C., Terrones, H., Ajayan, P.M.: Molecular junctions by joining single-walled carbon nanotubes. Phys. Rev. Lett. 89(7), 075505 (2002)

    Article  ADS  PubMed  Google Scholar 

  44. Liu, Q., Liu, W., Cui, Z.-M., Song, W.-G., Wan, L.-J.: Synthesis and characterization of 3D double branched K junction carbon nanotubes and nanorods. Carbon 45(2), 268–273 (2007)

    Article  Google Scholar 

  45. Domanski, K., Janus, P., Grabiec, P., Perez, R., Chaillet, N., Fahlbusch, S., Sill, A., Fatikow, S.: Design, fabrication and characterization of force sensors for nanorobot. Microelectron. Eng. 78–79, 171–177 (2005)

    Article  Google Scholar 

  46. Lee, E., Kim, M., Seong, J., Shin, H., Lim, G.: An L-shaped nanoprobe for scanning electrochemical microscopy-atomic force microscopy. Phys. Stat. Sol. 7(6), 406–409 (2013)

    Google Scholar 

  47. Nourisaeid, E., Mousavi, A., Arpanaei, A.: Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes. Physica E 75, 188–195 (2016)

    Article  ADS  Google Scholar 

  48. Wang, Y.G., Ma, W.L., Li, X.F.: Free in-plane bending vibration of flexible L-shaped nanostructures based on the nonlocal beam theory. Acta Mech. 233, 2767–2779 (2022)

    Article  MathSciNet  Google Scholar 

  49. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54(9), 4703–4710 (1983)

    Article  ADS  Google Scholar 

  50. Lu, P., Lee, H., Lu, C., Zhang, P.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl. Phys. 99(7), 073510 (2006)

    Article  ADS  Google Scholar 

  51. Morales, C.A.: Dynamic analysis of an L-shaped structure by Rayleigh–Ritz substructure synthesis method. Meccanica 44(3), 339–343 (2009)

    Article  Google Scholar 

  52. Weaver, W.J., Timoshenko, S.P., Young, D.H.: Vibration Problems in Engineering. Wiley-Interscience, New York (1990)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Hunan Province of China (Grant No. 2022JJ30583) and Scientific Research Fund of Hunan Provincial Education Department (Grant No. 21B0315).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. L. Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y.Q., Peng, X.L. In-plane bending vibration of L-shaped cantilever nanobeams carrying a tip nanoparticle by nonlocal elasticity. Acta Mech (2024). https://doi.org/10.1007/s00707-024-03905-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00707-024-03905-2

Navigation