Skip to main content
Log in

Flexural vibration control of functionally graded poroelastic pipes via periodic piezoelectric design

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In this paper, the flexural wave propagation and its control of a novel piezoelectric composite pipe conveying fluid are investigated. Dual piezoelectric layers used as sensor and actuator are periodically arranged on the pipe, and a feedback amplifying circuit is applied from sensor to actuator, forming a self-powered phononic crystal (PC) control structure. The vibration reduction performance can be actively tuned by adjusting the feedback control gain instead of conventional changing the construction of pipe itself. The pipe is composed of functionally graded material (FGM), in which the material properties vary continuously along the radial direction, and a poroelastic medium is introduced. By using the Timoshenko beam theory and Hamilton’s principle, a set of electromechanical coupling equations governing flexural vibration of the pipe is deduced. The band structure, band gap (BG) distribution and frequency response are presented by applying the spectral element technology. Comprehensive parametric studies are carried out. The results obtained validate the excellent vibration control effect of the proposed design, and further demonstrate the significant impacts of material, piezoelectric layers, feedback control and flowing fluid on the BG characteristics. This paper is expected to provide a technological reference for the vibration and elastic wave control of engineering composite pipe structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Mao, X.Y., Ding, H., Chen, L.Q.: Bending vibration control of pipes conveying fluids by nonlinear torsional absorbers at the boundary. Sci. China Technol. Sci. 64, 1690–1704 (2021)

    Google Scholar 

  2. Ding, H., Ji, J.C.: Vibration control of fluid-conveying pipes: a state-of-the-art review. Appl. Math. Mech.-Engl. 44, 1423–1456 (2023)

    MathSciNet  Google Scholar 

  3. Silverberg, J.L., Evans, A.A., McLeod, L., Hayward, R.C., Hull, T., Santangelo, C.D., Cohen, I.: Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345, 647–650 (2014)

    Google Scholar 

  4. Thota, M., Wang, K.W.: Tunable waveguiding in origami phononic structures. J. Sound Vib. 430, 93–100 (2018)

    Google Scholar 

  5. Zhao, X.N., Yang, X.D., Zhang, W., Pu, H.Y.: Active tuning of elastic wave propagation in a piezoelectric metamaterial beam. AIP Adv. 11, 065009 (2021)

    Google Scholar 

  6. Zuo, S.L., Li, F.M., Zhang, C.Z.: Numerical and experimental investigations on the vibration band-gap properties of periodic rigid frame structures. Acta Mech. 227, 1653–1669 (2016)

    MathSciNet  Google Scholar 

  7. Panahi, E., Hosseinkhani, A., Younesian, D., Moayedizadeh, A.: A new circular-maze-shaped phononic crystal with multiband and broadband vibration filtration feature: design and experiment. Acta Mech. 233, 4961–4983 (2022)

    Google Scholar 

  8. Koo, G.H., Park, Y.S.: Vibration reduction by using periodic supports in a piping system. J. Sound Vib. 210, 53–68 (1998)

    Google Scholar 

  9. Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z., Wen, X.S.: Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. J. Sound Vib. 318, 193–205 (2008)

    Google Scholar 

  10. Shen, H.J., Wen, J.H., Paїdoussis, M.R., Yu, D.L., Asgari, M., Wen, X.S.: Control of sound and vibration for cylindrical shells by utilizing a periodic structure of functionally graded material. Phys. Lett. A 376, 3351–3358 (2012)

    Google Scholar 

  11. Shoaib, M., Pang, W.J., Li, F.M.: Vibration reduction of pipes conveying fluid with periodic inertial amplification mechanisms. Waves Random Complex Media https://doi.org/10.1080/17455030.2021.1950949 (2021)

  12. Liang, F., Chen, Y., Gong, J.J., Qian, Y.: Vibration self-suppression of spinning fluid-conveying pipes composed of periodic composites. Int. J. Mech. Sci. 220, 107150 (2022)

    Google Scholar 

  13. Liang, F., Xu, W.H., Chen, Z.Q.: Flexural–torsional vibration reduction of an eccentric phononic crystal pipe conveying fluid. J. Fluids Struct. 120, 103904 (2023)

    Google Scholar 

  14. Liang, F., Chen, Y., Kou, H.J., Qian, Y.: Hybrid Bragg-locally resonant bandgap behaviors of a new class of motional two-dimensional meta-structure. Eur. J. Mech. A-Solids 97, 104832 (2023)

    MathSciNet  Google Scholar 

  15. Lyu, X.F., Chen, F., Ren, Q.Q., Tang, Y., Ding, Q., Yang, T.Z.: Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mech. Solida Sin. 33, 770–780 (2020)

    Google Scholar 

  16. Yu, D.L., Du, C.Y., Shen, H.J., Liu, J.W., Wen, J.H.: An analysis of structural-acoustic coupling band gaps in a fluid-filled periodic pipe. Chin. Phys. Lett. 34, 076202 (2017)

    Google Scholar 

  17. Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z., Wen, X.S.: Flexural vibration band gap in a periodic fluid-conveying pipe system based on the Timoshenko beam theory. ASME J. Vib. Acoust. 133, 014502 (2011)

    Google Scholar 

  18. Dal Poggetto, V.F., Serpa, A.L.: Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method. J. Sound Vib. 495, 115909 (2021)

    Google Scholar 

  19. Shen, H.J., Wen, J.H., Yu, D.L., Asgari, M., Wen, X.S.: Control of sound and vibration of fluid-filled cylindrical shells via periodic design and active control. J. Sound Vib. 332, 4193–4209 (2013)

    Google Scholar 

  20. Lu, J.F., Cheng, J., Feng, Q.S.: Plane wave finite element model for the 2-D phononic crystal under force loadings. Eur. J. Mech. A-Solids 91, 104426 (2022)

    MathSciNet  Google Scholar 

  21. Guo, X.Y., Jiang, P., Zhang, W., Yang, J., Kitipornchai, S., Sun, L.: Nonlinear dynamic analysis of composite piezoelectric plates with graphene skin. Compos. Struct. 206, 839–852 (2018)

    Google Scholar 

  22. Li, W., Yang, X.D., Zhang, W., Ren, Y., Yang, T.Z.: Free vibrations and energy transfer analysis of the vibrating piezoelectric gyroscope based on the linear and nonlinear decoupling methods. ASME J. Vib. Acoust. 141, 041015 (2019)

    Google Scholar 

  23. Tang, Y., Gao, C.K., Li, M.M., Ding, Q.: Novel active-passive hybrid piezoelectric network for vibration suppression in fluid-conveying pipes. Appl. Math. Model. 117, 378–398 (2023)

    MathSciNet  Google Scholar 

  24. Ren, T., Liu, C.C., Li, F.M., Zhang, C.Z.: Active tuning of the vibration band gap characteristics of periodic laminated composite metamaterial beams. J. Intel. Mat. Syst. Str. 31, 843–859 (2020)

    Google Scholar 

  25. Wang, Y.Z., Li, F.M., Kishimoto, K.: Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals. Acta Mech. 216, 291–300 (2011)

    Google Scholar 

  26. Wang, G., Chen, S.B.: Large low-frequency vibration attenuation induced by arrays of piezoelectric patches shunted with amplifier–resonator feedback circuits. Smart Mater. Struct. 25, 015004 (2016)

    Google Scholar 

  27. Wen, J.H., Chen, S.B., Wang, G., Yu, D.L., Wen, X.S.: Directionality of wave propagation and attenuation in plates with resonant shunting arrays. J. Intel. Mat. Syst. Str. 27, 28–38 (2016)

    Google Scholar 

  28. Chen, S.B., Song, Y.B., Zhang, H.: Wave propagation in L-shape beams with piezoelectric shunting arrays. Shock. Vib. 2019, 1–14 (2019)

    Google Scholar 

  29. Airoldi, L., Ruzzene, M.: Design of tunable acoustic metamaterials through periodic arrays of resonant shunted piezos. New J. Phys. 13, 113010 (2011)

    Google Scholar 

  30. Casadei, F., Delpero, T., Bergamini, A., Ermanni, P., Ruzzene, M.: Piezoelectric resonator arrays for tunable acoustic waveguides and metamaterials. J. Appl. Phys. 112, 064902 (2012)

    Google Scholar 

  31. Wang, Y.Z., Li, F.M., Kishimoto, K., Wang, Y.S., Huang, W.H.: Band gaps of elastic waves in three-dimensional piezoelectric phononic crystals with initial stress. Eur. J. Mech. A-Solids 29, 182–189 (2010)

    Google Scholar 

  32. Zhou, W.J., Muhammad, Chen, W.Q., Chen, Z.Y., Lim, C.W.: Actively controllable flexural wave band gaps in beam-type acoustic metamaterials with shunted piezoelectric patches. Eur. J. Mech. A-Solids 77, 103807 (2019)

  33. Pradhan, S.C., Loy, C.T., Lam, K.Y., Reddy, J.N.: Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Appl. Acoust. 61, 111–129 (2000)

    Google Scholar 

  34. Sepehri, S., Jafari, H., Mosavi Mashhadi, M., Hairi Yazdi, M.R., Seyyed Fakhrabadi, M.M.: Tunable elastic wave propagation in planar functionally graded metamaterials. Acta Mech. 231, 3363–3385 (2020)

    MathSciNet  Google Scholar 

  35. Guo, L.J., Mao, J.J., Zhang, W., Liu, Y.Z., Chen, J., Zhao, W.: Modeling and analyze of behaviors of functionally graded graphene reinforced composite beam with geometric imperfection in multiphysics. Aerosp. Sci. Technol. 127, 107722 (2022)

    Google Scholar 

  36. Khodabakhsh, R., Saidi, A.R., Bahaadini, R.: An analytical solution for nonlinear vibration and post-buckling of functionally graded pipes conveying fluid considering the rotary inertia and shear deformation effects. Appl. Ocean Res. 101, 102277 (2020)

    Google Scholar 

  37. Liang, F., Yang, X.D., Bao, R.D., Zhang, W.: Frequency analysis of functionally graded curved pipes conveying fluid. Adv. Mater. Sci. Eng. 2016, 7574216 (2016)

    Google Scholar 

  38. Lu, Z.Q., Zhang, K.K., Ding, H., Chen, L.Q.: Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dyn. 100, 1091–1104 (2020)

    Google Scholar 

  39. Deng, J.Q., Liu, Y.S., Zhang, Z.J., Liu, W.: Dynamic behaviors of multi-span viscoelastic functionally graded material pipe conveying fluid. Proc. Inst. Mech. Eng. C-J. Mech. Eng. Sci. 231, 3181–3192 (2017)

    Google Scholar 

  40. Zhang, Y.W., She, G.L.: Wave propagation and vibration of FG pipes conveying hot fluid. Steel Compos. Struct. 42, 397–405 (2022)

    Google Scholar 

  41. Zhou, X.W., Dai, H.L., Wang, L.: Dynamics of axially functionally graded cantilevered pipes conveying fluid. Compos. Struct. 190, 112–118 (2018)

    Google Scholar 

  42. Tang, Y., Yang, T.Z.: Post-buckling behavior and nonlinear vibration analysis of a fluid-conveying pipe composed of functionally graded material. Compos. Struct. 185, 393–400 (2018)

    Google Scholar 

  43. Zhen, Y.X., Gong, Y.F., Tang, Y.: Nonlinear vibration analysis of a supercritical fluid-conveying pipe made of functionally graded material with initial curvature. Compos. Struct. 268, 113980 (2021)

    Google Scholar 

  44. Liang, F., Gao, A., Yang, X.D.: Dynamical analysis of spinning functionally graded pipes conveying fluid with multiple spans. Appl. Math. Model. 83, 454–469 (2020)

    MathSciNet  Google Scholar 

  45. Deng, J.Q., Liu, Y.S., Zhang, Z.J., Liu, W.: Size-dependent vibration and stability of multi-span viscoelastic functionally graded material nanopipes conveying fluid using a hybrid method. Compos. Struct. 179, 590–600 (2017)

    Google Scholar 

  46. Liu, H., Lv, Z., Tang, H.J.: Nonlinear vibration and instability of functionally graded nanopipes with initial imperfection conveying fluid. Appl. Math. Model. 76, 133–150 (2019)

    MathSciNet  Google Scholar 

  47. Di Paola, M., Failla, G., Sofi, A., Zingales, M.: On the vibrations of a mechanically based non-local beam model. Comp. Mater. Sci. 64, 278–282 (2012)

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 12372025 and 12072311) and the Collegiate Innovation and Entrepreneurship Training Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, YH., Chen, ZQ., Liang, F. et al. Flexural vibration control of functionally graded poroelastic pipes via periodic piezoelectric design. Acta Mech 235, 3131–3147 (2024). https://doi.org/10.1007/s00707-024-03879-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-024-03879-1

Navigation