Skip to main content
Log in

Boundary controllability of a nonlinear elastic body

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper addresses the exact controllability of vibrations in a three-dimensional Cosserat elastic solid body using mathematical techniques such as operator theory and semigroup methods. The verification of exact (shape) controllability is accomplished through the application of the Hilbert Uniqueness Method, which involves investigating the boundary observability for the dual system. In partial differential equations control theory, the concept of exact observability for the dual system is fundamental to achieving exact controllability, although it differs from the common understanding of controllability. While control theory for systems governed by ordinary differential equations (ODEs) has a relatively formal and standardized approach, systems with distributed parameters, such as the Cosserat medium under consideration, involve a multitude of technical inequalities that must be established. Notably, Cosserat media possess six degrees of freedom for microstructures, in contrast to classical media with only three degrees of freedom. Consequently, exact control is required for all six variables, encompassing three translational and three rotational degrees of freedom, while classical media only necessitate the exact control of three translational variables. The paper concludes with a series of numerical studies utilizing the fast Fourier transform (FFT) and various simulations, which serve to validate the effectiveness of the proposed control scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lotfazar, A., Eghtesad, M., Najafi, A., A.: Vibration control and trajectory tracking for general in-plane motion of an Euler-Bernoulli beam via two-time scale and boundary control methods. J. Vib. Acoust. 130(5), 51009 (2008). https://doi.org/10.1016/j.jmaa.2014.03.012

    Article  Google Scholar 

  2. Najafi Ardekany, A., Daneshmand, F., Mehrvarz, A.: Vibration analysis of a micropolar membrane in contact with fluid. Iran. J. Sci. Technol. Trans. Mech. Eng. (2018). https://doi.org/10.1007/s40997-018-0188-3

    Article  Google Scholar 

  3. Yu, Y., Zhang, X.N., Xie, S.L.: Optimal shape control of a beam using piezoelectric actuators with low control voltage. Smart Mater. Struct. (2009). https://doi.org/10.1088/0964-1726/18/9/095006

    Article  Google Scholar 

  4. Krstic, M., Smyshlyaev, A.: Boundary Control of PDEs: A Course on Backstepping Designs. Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  5. Najafi, A., Eghtesad, M., Daneshmand, F.: Asymptotic stabilization of vibrating composite plates. Syst. Control Lett. 59, 530–535 (2010)

    Article  MathSciNet  Google Scholar 

  6. Vatankhah, R., Najafi, A., Salarieh, H., Alasty, A.: Exact boundary controllability of vibrating non-classical Euler-Bernoulli micro-scale beams. J. Math. Anal. Appl. 418, 985–997 (2014). https://doi.org/10.1016/j.jmaa.2014.03.012

    Article  MathSciNet  Google Scholar 

  7. Dolecki, S., Russell, D.: A general theory of observation and control. SIAM J. Control. Optim. 15, 185–220 (1977). https://doi.org/10.1137/0315015

    Article  MathSciNet  Google Scholar 

  8. Lagnese J. E.: The hilbert uniqueness method: A Retrospective—from Optimal Control of Partial Differential Equations, pp.158-181, Springer, Berlin, Heidelberg (2006) https://doi.org/10.1007/BFb0043222

  9. Bensoussan, A.: On the general theory of exact controllability for skew symmetric operators. Acta Appl. Math. 20, 197–229 (1990). https://doi.org/10.1007/BF00049568

    Article  MathSciNet  Google Scholar 

  10. He, W., Ge, S.S., How, B.V.E., Choo, Y.S., Hong, K.S.: Robust adaptive boundary control of a flexible marine riser with vessel dynamics. Automatica 47, 722–732 (2011). https://doi.org/10.1016/j.automatica.2011.01.064

    Article  MathSciNet  Google Scholar 

  11. Najafi, A., Alasty, A., Vatankhah, R., Eghtesad, M., Daneshmand, F.: Boundary Stabilization of a cosserat elastic body. Asian J. Control 19, 2219–2225 (2017). https://doi.org/10.1002/asjc.1572

    Article  MathSciNet  Google Scholar 

  12. Entessari, F., Najafi Ardekany, A., Alasty, A.: Boundary control of a vertical nonlinear flexible manipulator considering disturbance observer and deflection constraint with torque and boundary force feedback signals. Int. J. Syst. Sci. (2021). https://doi.org/10.1080/00207721.2021.1971793

    Article  Google Scholar 

  13. Plotnikova, S.V., Kulikov, G.M.: Shape control of composite plates with distributed piezoelectric actuators in a three-dimensional formulation. Mech. Compos. Mater. 56, 557–572 (2020)

    Article  Google Scholar 

  14. Kumar, R., Partap, G.: Rayleigh lamb waves in micropolar isoteropic elastic plate. Appl. Math. Mech. 27(8), 1049–1059 (2006). https://doi.org/10.1007/s10483-006-0805-z

    Article  MathSciNet  Google Scholar 

  15. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids. Springer-Verlag, New York (1999)

    Book  Google Scholar 

  16. Singh, A.B., Singh, A.K., Guha, S., Kummar, D.: Analysis on the propagation of crack in a functionally graded orthotropic strip under pre-stress. Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2048128

    Article  Google Scholar 

  17. Singh, A.K., Singh, A.K., Yadav, R.P.: Stress intensity factor of dynamic crack in double-Layered dry sandy elastic medium due to shear wave under different loading conditions. Int. J. Geomech. (2020). https://doi.org/10.1061/(ASCE)GM.1943-5622.0001827

    Article  Google Scholar 

  18. Singh, A.K., Singh, A.K.: Dynamic stress concentration os a smooth moving punch influenced by a shear wave in an initially stressed dry sandy layer. Acta Mech. 233, 1757–1768 (2022). https://doi.org/10.1007/s00707-022-03197-4

    Article  MathSciNet  Google Scholar 

  19. Liu, Y., Guo, F., He, X., Hui, Q.: Boundary control for an axially moving system with input restriction based on disturbance observers. IEEE Transact. Syst. Man Cybern. Syst. (2019). https://doi.org/10.1109/TSMC.2018.2843523

    Article  Google Scholar 

  20. Liu, Y., Chen, X., Mei, Y., Wu, Y.: Observer-based boundary control for an asymmetric output-constrained flexible robotic manipulator. Sci. China Inf. Sci. (2022). https://doi.org/10.1007/s11432-019-2893-y

    Article  MathSciNet  Google Scholar 

  21. Singh, A.K., Singh, A.K.: Mathematical study on the propagation of Griffith crack in a dry sandy subjected to punch pressure. Waves Random Complex Media (2022). https://doi.org/10.1080/15397734.2023.2258196

    Article  Google Scholar 

  22. Singh, A.K., Singh, A.K., Guha, A., Kumar, D.: Mathematical analysis on the propagation of Griffith crack in ana initially stressed strip subjected to punch pressure. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2223614

    Article  Google Scholar 

  23. Dimitri, R., Rinaldi, M., Trullo, M.: Theoretical and computational investigation of the fracturing behavior of anisotropic geomaterials. Continuum Mech. Thermodyn. 35, 1417–1432 (2023). https://doi.org/10.1007/s00161-022-01141-4

    Article  MathSciNet  Google Scholar 

  24. Singh, A.K., Singh, A.K., Kaushik, S.K.: On analytical study of Griffith crack propagation in a transversely isotropic dry sandy punch pressured strip. Phys. Scr. (2023). https://doi.org/10.1088/1402-4896/acef6d

    Article  Google Scholar 

  25. Singh, A.K., Singh, A.K., Yadav, R.P.: Analytical study on the propagation of semi-infinite crack due to SH-wave in pre-stressed magnetoelastic orthotropic strip. Mech. Based Des. Struct. Mach. (2023). https://doi.org/10.1080/15397734.2023.2258196

    Article  Google Scholar 

  26. Alabau, F., Komornik, V.: Boundary observability, controllability, and stabilization of linear elastodynamic systems. SIAM J. Control. Optim. 37(2), 521–542 (1999). https://doi.org/10.1137/S03630129963138

    Article  MathSciNet  Google Scholar 

  27. Eringen, A.C.: Continuum Physics, v. 4., 1st Edition, Elsevier Science, (1976)

  28. Eringen, A.C.: Microcontinuum Field Theories I: Foundations and Solids, no, vol. 1. Springer, Heidelberg (2002)

    Google Scholar 

  29. Lions, L.L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués: Contrôlabilité exacte. Masson, (1988)

  30. Komornik, V.: Exact controllability and stabilization: the multiplier method. the University of Michigan, Wiley, (1994)

  31. Asghari, M., Kahrobaiyan, M.H., Rahaeifard, M., Ahmadian, M.T.: Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch. Appl. Mech. 81, 7863–7874 (2011). https://doi.org/10.1007/s00419-010-0452-5

    Article  Google Scholar 

  32. Pedregal, P., Preiago, F., Villena, J.: A numerical method of local energy decay for the boundary controllability of time-reversible distributed parameter systems. Stud. Appl. Math. 121, 27–47 (2008). https://doi.org/10.1111/j.1467-9590.2008.00406.x

    Article  MathSciNet  Google Scholar 

  33. Pedregal, P., Preiago, F.: Some remarks on homogenization and exact boundary controllability for the one- dimensional wave equation. Q. Appl. Math. 64, 529–546 (2006). https://doi.org/10.1090/S0033-569X-06-01022-4

    Article  MathSciNet  Google Scholar 

  34. Walker, J.S.: Fast fourier transforms,2nd Edition, Chicago, (1996)

  35. Font, R., Preiago, F.: Numerical simulation of the boundary exact control for the system of linear elasticity. Appl. Math. Lett. 23, 1021–1026 (2010). https://doi.org/10.1016/j.aml.2010.04.030

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Najafi Ardekany.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardekany, A.N., Hosseini, Z.M. Boundary controllability of a nonlinear elastic body. Acta Mech 235, 3149–3166 (2024). https://doi.org/10.1007/s00707-023-03840-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03840-8

Navigation