Skip to main content
Log in

Theoretical and experimental vibroacoustic analysis of advanced hybrid structure (CNT/luffa/epoxy)

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This study presents the vibroacoustic analysis of a hybrid epoxy composite panel reinforced with advanced multi-walled carbon nanotubes (MW-CNTs) and luffa fibre. The vibroacoustic responses were obtained numerically, and the model validity was verified with experimental values. The responses were analysed under the stimulus of harmonic point excitation, considering ambient conditions, using a coupled finite element–boundary element (FE–BE) model. To ensure the accuracy and stability of the numerical model, the different structural responses, including natural and thermal frequency, of hybrid composite plates, were evaluated and compared with data from published literature. In addition, experimentation was conducted, and the results were compared with the numerically derived model to demonstrate the model’s effectiveness. Furthermore, several numerical examples were solved using the numerical model to illustrate its applicability and enhance understanding. The results obtained from the experimental investigation showed that adding luffa fibre and MW-CNTs to the composite panel improved its sound transmission loss and absorption coefficient. Overall, the results suggest that the hybrid composite panel has excellent vibroacoustic performance and can be used in various engineering applications that require lightweight, high-strength materials with good damping and noise reduction properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zhao, X., Zhang, B., Li, Y.: Vibration and acoustic radiation of an orthotropic composite cylindrical shell in a hygroscopic environment. JVC/J. Vib. Control. 23, 673–692 (2017). https://doi.org/10.1177/1077546315581943

    Article  MathSciNet  Google Scholar 

  2. Li, X., Yu, K., Han, J., Song, H., Zhao, R.: Buckling and vibro-acoustic response of the clamped composite laminated plate in thermal environment. Int. J. Mech. Sci. 119, 370–382 (2016). https://doi.org/10.1016/j.ijmecsci.2016.10.021

    Article  Google Scholar 

  3. Civalek, Ö.: Analysis of thick rectangular plates with symmetric cross-ply laminates based on first-order shear deformation theory. J. Compos. Mater. 42, 2853–2867 (2008). https://doi.org/10.1177/0021998308096952

    Article  Google Scholar 

  4. Arunkumar, M.P., Bhagat, V., Geng, Q., Ning, J., Li, Y.: An analytical solution for vibro-acoustic characteristics of sandwich panel with 3DGrF core and FG-CNT reinforced polymer composite face sheets. Aerosp. Sci. Technol. 119, 107091 (2021). https://doi.org/10.1016/j.ast.2021.107091

    Article  Google Scholar 

  5. Tang, Y., Tang, Y., Wang, X., Zhou, T., Li, H.: Study on underwater vibro-acoustic characteristics of carbon/glass hybrid composite laminates. Rev. Adv. Mater. Sci. 60, 966–979 (2021). https://doi.org/10.1515/rams-2021-0072

    Article  Google Scholar 

  6. Mejdi, A., Atalla, N.: Vibroacoustic analysis of laminated composite panels stiffened by complex laminated composite stiffeners. Int. J. Mech. Sci. 58, 13–26 (2012). https://doi.org/10.1016/j.ijmecsci.2012.02.003

    Article  Google Scholar 

  7. Amichi, K., Atalla, N., Ruokolainen, R.: A new 3D finite element sandwich plate for predicting the vibroacoustic response of laminated steel panels. Finite Elem. Anal. Des. 46, 1131–1145 (2010). https://doi.org/10.1016/j.finel.2010.07.002

    Article  Google Scholar 

  8. Sun, Y., Yang, T., Chen, Y.: Sound radiation modes of cylindrical surfaces and their application to vibro-acoustics analysis of cylindrical shells. J. Sound Vib. 424, 64–77 (2018). https://doi.org/10.1016/j.jsv.2018.03.004

    Article  Google Scholar 

  9. George, N., Pitchaimani, J., Murigendrappa, S.M., Lenin Babu, M.C.: Vibro-acoustic behavior of functionally graded carbon nanotube reinforced polymer nanocomposite plates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 232, 566–581 (2018). https://doi.org/10.1177/1464420716640301

    Article  Google Scholar 

  10. Chronopoulos, D., Troclet, B., Ichchou, M., Lainé, J.P.: A unified approach for the broadband vibroacoustic response of composite shells. Compos. Part B Eng. 43, 1837–1846 (2012). https://doi.org/10.1016/j.compositesb.2012.01.059

    Article  Google Scholar 

  11. Sharma, N., Mahapatra, T.R., Panda, S.K.: Vibro-acoustic behaviour of shear deformable laminated composite flat panel using BEM and the higher order shear deformation theory. Compos. Struct. 180, 116–129 (2017). https://doi.org/10.1016/j.compstruct.2017.08.012

    Article  Google Scholar 

  12. Amichi, K., Atalla, N., Ruokolainen, R.: An efficient sandwich plate element for predicting the vibro-acoustic response of laminated steel panels. In: ASME 2008 Noise Control and Acoustics Division Conference. pp. 389–396. ASMEDC (2008)

  13. Klepka, A., Pieczonka, L., Staszewski, W.J., Aymerich, F.: Impact damage detection in laminated composites by non-linear vibro-acoustic wave modulations. Compos. Part B Eng. 65, 99–108 (2014). https://doi.org/10.1016/j.compositesb.2013.11.003

    Article  Google Scholar 

  14. Zhang, H., Shi, D., Zha, S., Wang, Q.: Vibro-acoustic analysis of the thin laminated rectangular plate-cavity coupling system. Compos. Struct. 189, 570–585 (2018). https://doi.org/10.1016/j.compstruct.2018.01.099

    Article  Google Scholar 

  15. Cheong, T.W., Zheng, L.W.: Vibroacoustic performance of composite honeycomb structures. Noise Control Eng. J. 54, 251 (2006). https://doi.org/10.3397/1.2219896

    Article  Google Scholar 

  16. Alhijazi, M., Safaei, B., Zeeshan, Q., Asmael, M., Eyvazian, A., Qin, Z.: Recent developments in Luffa natural fiber composites: review. Sustainability (2020). https://doi.org/10.3390/su12187683

    Article  Google Scholar 

  17. Danu, S., Saini, N.K., Sharma, H., Studies, E.: Composites for Vibro-Acoustics-A Review Composites for Vibro-Acoustics-A Review. (2019)

  18. Zhang, J., Khatibi, A.A., Castanet, E., Baum, T., Komeily-Nia, Z., Vroman, P., Wang, X.: Effect of natural fibre reinforcement on the sound and vibration damping properties of bio-composites compression moulded by nonwoven mats. Compos. Commun. 13, 12–17 (2019). https://doi.org/10.1016/j.coco.2019.02.002

    Article  Google Scholar 

  19. Genc, G., Koruk, H.: Investigation of the vibro-acoustic behaviors of luffa bio composites and assessment of their use for practical applications. 23rd Int Congr. Sound Vib. 2016, 1–8 (2016)

    Google Scholar 

  20. Genc, G., Koruk, H.: Effects of machining on the acoustic and mechanical properties of jute and luffa biocomposites. Cellul. Fibre Reinf. Compos. 343–355 (2023). doi:https://doi.org/10.1016/B978-0-323-90125-3.00006-9

  21. Satankar, R.K., Sharma, N., Panda, S.K.: Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber-reinforced polymeric composite. Polym. Compos. 41, 4461–4477 (2020). https://doi.org/10.1002/pc.25724

    Article  Google Scholar 

  22. Koruk, H., Genc, G.: Investigation of the acoustic properties of bio luffa fiber and composite materials. Mater. Lett. 157, 166–168 (2015). https://doi.org/10.1016/j.matlet.2015.05.071

    Article  Google Scholar 

  23. Saygili, Y., Genc, G., Sanliturk, K.Y., Koruk, H.: Investigation of the Acoustic and Mechanical Properties of Homogenous and Hybrid Jute and Luffa Bio Composites. J. Nat. Fibers 19, 1217–1225 (2022). https://doi.org/10.1080/15440478.2020.1764446

    Article  Google Scholar 

  24. Thilagavathi, G., Neela Krishnan, S., Muthukumar, N., Krishnan, S.: Investigations on sound absorption properties of luffa fibrous mats. J. Nat. Fibers 15, 445–451 (2018). https://doi.org/10.1080/15440478.2017.1349016

    Article  Google Scholar 

  25. Adeyanju, C.A., Ogunniyi, S., Ighalo, J.O., Adeniyi, A.G., Abdulkareem, S.A.: A review on Luffa fibres and their polymer composites. J. Mater. Sci. 56, 2797–2813 (2021). https://doi.org/10.1007/s10853-020-05432-6

    Article  Google Scholar 

  26. Noroozi, M., Zajkani, A., Ghadiri, M.: Dynamic plastic impact behavior of CNTs/fiber/polymer multiscale laminated composite doubly curved shells. Int. J. Mech. Sci. 195, 106223 (2021). doi:https://doi.org/10.1016/j.ijmecsci.2020.106223

  27. Liu, Y., Kumar, S.: Polymer_Carbon nanotube nano composite fibers—a review. ACS Appl. Mater. Interfaces (2014). https://doi.org/10.1021/am405136s

    Article  Google Scholar 

  28. Zhang, L.W., Selim, B.A.: Vibration analysis of CNT-reinforced thick laminated composite plates based on Reddy’s higher-order shear deformation theory. Compos. Struct. 160, 689–705 (2017). https://doi.org/10.1016/j.compstruct.2016.10.102

    Article  Google Scholar 

  29. Pan, S., Dai, Q., Safaei, B., Qin, Z., Chu, F.: Damping characteristics of carbon nanotube reinforced epoxy nanocomposite beams. Thin-Walled Struct. 166, 108127 (2021). https://doi.org/10.1016/j.tws.2021.108127

    Article  Google Scholar 

  30. Erukala, K.K., Mishra, P.K., Dewangan, H.C., Panda, S.K., Dwivedi, M.: Damaged composite structural strength enhancement under elevated thermal environment using shape memory alloy fiber. Acta Mech. 233, 3133–3155 (2022). https://doi.org/10.1007/s00707-022-03272-w

    Article  MathSciNet  MATH  Google Scholar 

  31. Kumar, E.K., Panda, S.K., Dwivedi, M., Mahmoud, S.R., Balubaid, M.: Numerical thermal frequency prediction of smart composite structure and experimental validation. Structures 47, 2408–2421 (2023). https://doi.org/10.1016/j.istruc.2022.12.066

    Article  Google Scholar 

  32. Kumar, E.K., Sharma, N., Panda, S.K., Mahmoud, S.R.: Numerical prediction of thermal buckling load parameters of damaged polymeric layered composite structure and reversal of strength using SMA fibre. Arch. Appl. Mech. 92, 3829–3845 (2022). https://doi.org/10.1007/s00419-022-02265-4

    Article  Google Scholar 

  33. Balakrishnan, B., Raja, S., Rajagopal, A.: Influence of MWCNT fillers on vibroacoustic characteristics of polymer nanocomposite and coated aircraft panels. Appl. Acoust. 172, 107604 (2021). https://doi.org/10.1016/j.apacoust.2020.107604

    Article  Google Scholar 

  34. Civalek, Ö.: Free vibration analysis of composite conical shells using the discrete singular convolution algorithm. Steel Compos. Struct. 6, 353–366 (2006). https://doi.org/10.12989/scs.2006.6.4.353

    Article  Google Scholar 

  35. Civalek, Ö.: The determination of frequencies of laminated conical shells via the discrete singular convolution method. J. Mech. Mater. Struct. 1, 163–182 (2006). https://doi.org/10.2140/jomms.2006.1.163

    Article  Google Scholar 

  36. Civalek, Ö.: A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Appl. Math. Model. 33, 300–314 (2009). https://doi.org/10.1016/j.apm.2007.11.003

    Article  MathSciNet  MATH  Google Scholar 

  37. Civalek, Ö.: Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elem. Anal. Des. 43, 1013–1022 (2007). https://doi.org/10.1016/j.finel.2007.06.014

    Article  Google Scholar 

  38. Tao, Y., Chen, C., Kiani, Y.: Frequency analysis of smart sandwich cylindrical panels with nanocomposite core and piezoelectric face sheets. Acta Mech. 234, 3219–3240 (2023). https://doi.org/10.1007/s00707-023-03557-8

    Article  MathSciNet  MATH  Google Scholar 

  39. Sadripour, S., Jafari-Talookolaei, R.A., Malekjafarian, A.: An efficient nine-node quadrilateral element for free vibration analysis of deep doubly curved soft-core sandwich shells. Acta Mech. 234, 4111–4145 (2023). https://doi.org/10.1007/s00707-023-03550-1

    Article  MATH  Google Scholar 

  40. Khoa, N.D.: Free vibration and nonlinear dynamic behaviors of the imperfect smart electric magnetic FG-laminated composite panel in a hygrothermal environments. Acta Mech. 234, 2617–2658 (2023). https://doi.org/10.1007/s00707-023-03505-6

    Article  MathSciNet  MATH  Google Scholar 

  41. Civalek, Ö.: Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation. J. Sound Vib. 294, 966–980 (2006). https://doi.org/10.1016/j.jsv.2005.12.041

    Article  Google Scholar 

  42. Civalek, Ö., Ülker, M.: Harmonic differential quadrature (HDQ) for axisymmetric bending analysis of thin isotropic circular plates. Struct. Eng. Mech. 17, 1–14 (2004). https://doi.org/10.12989/sem.2004.17.1.001

    Article  Google Scholar 

  43. Ersoy, H., Mercan, K., Civalek, Ö.: Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods. Compos. Struct. 183, 7–20 (2018). https://doi.org/10.1016/j.compstruct.2016.11.051

    Article  Google Scholar 

  44. Mercan, K., Demir, Ç., Civalek, Ö.: Vibration analysis of FG cylindrical shells with power-law index using discrete singular convolution technique. Curved Layer. Struct. 3, 82–90 (2016). https://doi.org/10.1515/cls-2016-0007

    Article  Google Scholar 

  45. Chiker, Y., Bachene, M., Attaf, B., Hafaifa, A., Guemana, M.: Uncertainty influence of nanofiller dispersibilities on the free vibration behavior of multi-layered functionally graded carbon nanotube-reinforced composite laminated plates. Acta Mech. 234, 1687–1711 (2023). https://doi.org/10.1007/s00707-022-03438-6

    Article  MATH  Google Scholar 

  46. John, B.O., Hassan, F.U., George, N., Chacko, T., Bhagat, V., Jeyaraj, P., Reddy, K.K., R: Thermal buckling and vibro-acoustic behaviour of functionally graded graphene polymer layered composites subjected to in-plane temperature variance. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236, 1541–1556 (2022). https://doi.org/10.1177/14644207221075130

    Article  Google Scholar 

  47. Kumar, V., Dewangan, H.C., Sharma, N., Panda, S.K.: Numerical prediction of static and vibration responses of damaged (crack and delamination) laminated shell structure: an experimental verification. Mech. Syst. Signal Process. 170, 108883 (2022). https://doi.org/10.1016/j.ymssp.2022.108883

    Article  Google Scholar 

  48. Kalyan, E., Subrata, K., Panda, K., Mohammed, S.R.M.: Influence of active SMA fibre on deflection recovery characteristics of damaged laminated composite theoretical and experimental analysis. Fibers Polym. (2023). https://doi.org/10.1007/s12221-023-00277-7

    Article  Google Scholar 

  49. Satankar, R.K., Sharma, N., Ramteke, P.M., Panda, S.K., Mahapatra, S.S.: Acoustic responses of natural fibre reinforced nanocomposite structure using multiphysics approach and experimental validation. Adv. Nano Res. 9, 263–276 (2020). https://doi.org/10.12989/anr.2020.9.4.263

    Article  Google Scholar 

  50. Zhu, P., Lei, Z.X., Liew, K.M.: Static and free vibration analyses of carbon nanotube-reinforced composite plates using finite element method with first order shear deformation plate theory. Compos. Struct. 94, 1450–1460 (2012). https://doi.org/10.1016/j.compstruct.2011.11.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrata Kumar Panda.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, E.K., Kumar, V., Sharma, N. et al. Theoretical and experimental vibroacoustic analysis of advanced hybrid structure (CNT/luffa/epoxy). Acta Mech 234, 5603–5619 (2023). https://doi.org/10.1007/s00707-023-03686-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03686-0

Navigation