Skip to main content
Log in

Thermo-magnetic interaction in a viscoelastic micropolar medium by considering a higher-order two-phase-delay thermoelastic model

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

A Correction to this article was published on 08 May 2024

This article has been updated

Abstract

This work aims to theoretically analyze the nonuniform heat transfer through a micropolar miniature half-space by investigating the magneto-thermo-viscoelastic interactions. To examine the micromechanical coupling and the influence of thermo-mechanical relaxation, a higher-order two-phase-lag thermoelastic concept and a viscoelastic model of Kelvin–Voigt type are considered. The theoretical framework has been extended to incorporate the Eringen’s nonlocal model to include the small-scale effects. The so-called Hall effect occurs in a conductive material when it is subjected to a high magnetic field orthogonal to the direction of the current traveling through it. Without nonlocality and viscoelastic effects, it is possible to achieve different types of generalized theories of thermoelasticity. The governing equations are developed and numerically solved using Laplace transforms. The Laplace transform is then inverted numerically using a method based on Fourier series expansion, and then the numerical values of physical fields are presented. The consequences of variations in nonlocality, viscoelasticity and the Hall effect are finally demonstrated and a comparison between the findings of this study and those for the generalized thermoelastic models are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

Change history

References

  1. Hide, R., Roberts, P.H.: The origin of the mean geomagnetic field. In: Physics and Chemistry of the Earth, Pergamon Press, New York (1961)

  2. Kaur, I., Lata, P.: Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer. SN Appl. Sci. 1, 900 (2019)

    Article  Google Scholar 

  3. Chteoui, R., Lotfy, K., El-Bary, A.A., Allan, M.M.: Hall current effect of magnetic-optical-elastic-thermal-diffusive nonlocal semiconductor model during electrons-holes excitation processes. Crystals 12(11), 1680 (2022)

    Article  Google Scholar 

  4. Zakaria, M.: Effects of Hall current and rotation on magneto-micropolar generalized thermoelasticity due to ramp-type heating. Int. J. Electro. Appl. 2(3), 24–32 (2012)

    Google Scholar 

  5. Khamis, A.K., El-Bary, A.A., Lotfy, Kh.: Electromagnetic Hall current and variable thermal conductivity influence for microtemperature photothermal excitation process of semiconductor material. Waves Random Complex Media 32(1), 406–423 (2022)

    Article  MathSciNet  Google Scholar 

  6. Shariati, A., Jung, D.W., Mohammad-Sedighi, H., Żur, K.K., Habibi, M., Safa, M.: Stability and dynamics of viscoelastic moving rayleigh beams with an asymmetrical distribution of material parameters. Symmetry. 12(4), 586 (2020). https://doi.org/10.3390/sym12040586

    Article  Google Scholar 

  7. Kalkal, K.K., Sheokand, S.K., Deswal, S.: Rotation and phase-lag effects in a micropolar thermo-viscoelastic half-space. Iran J. Sci. Technol. Trans. Mech. Eng. 43, 427–441 (2019)

    Article  Google Scholar 

  8. Ilioushin, A.A., Pobedria, B.E.: Fundamentals of the Mathematical Theories of Thermal Viscoelasticity. Nauka, Moscow (1970)

    Google Scholar 

  9. Biot, M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  Google Scholar 

  10. Lord, H., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solid. 15, 299–309 (1967)

    Article  Google Scholar 

  11. Green, A.E., Lindsay, K.A.: Thermoelasticity. J. Elasticity. 2, 1–7 (1972)

    Article  Google Scholar 

  12. Green, A.E., Naghdi, P.M.: A re-examination of the basic properties of thermomechanics. Proc. R. Soc. Lond. Ser. A. 432, 171–194 (1991)

    Article  Google Scholar 

  13. Green, A.E., Naghdi, P.M.: On damped heat waves in an elastic solid. J. Therm. Stresses. 15, 253–264 (1992)

    Article  Google Scholar 

  14. Green, A.E., Naghdi, P.M.: Thermoelasticity without energy dissipation. J. Elasticity. 31, 189–208 (1993)

    Article  MathSciNet  Google Scholar 

  15. Roychoudhuri, S.K.: On a thermoelastic three-phase-lag model. J. Therm. Stresses 30, 231–238 (2007)

    Article  Google Scholar 

  16. Abouelregal, A.E., Sedighi, H.M., Eremeyev, V.A.: Thermomagnetic behavior of a semiconductor material heated by pulsed excitation based on the fourth-order MGT photothermal model. Continuum Mech. Thermodyn. (2022). https://doi.org/10.1007/s00161-022-01170-z

    Article  Google Scholar 

  17. Abouelregal, A.E., Sedighi, H.M.: Elastic thermal deformation of an infinite copper material due to cyclic heat supply using higher-order nonlocal thermal modeling. Metals. 12(11), 1927 (2022)

    Article  Google Scholar 

  18. Moaaz, O., Abouelregal, A.E., Alesemi, M.: Moore–Gibson–Thompson photothermal model with a proportional caputo fractional derivative for a rotating magneto-thermoelastic semiconducting material. Mathematics. 10(17), 3087 (2022)

    Article  Google Scholar 

  19. Eringen, A.C.: Linear theory of micropolar elasticity. J. Appl. Math. Mech. 15, 909–923 (1966)

    MathSciNet  Google Scholar 

  20. Eringen A.C.: Foundations of Micropolar Thermoelasticity, Udline Course and Lectures 23, International Centre for Mechanical Science, Springer, Berlin, Germany (1970)

  21. Eringen, A.C.: Microcontinuum Field Theories—I Foundations and Solids. Springer, Berlin (1999)

    Book  Google Scholar 

  22. Nowacki, W.: Theory of Asymmetric Elasticity. Pergamon, Oxford (1986)

    Google Scholar 

  23. Dost, S., Tabarrok, B.: Generalized micropolar thermoelasticity. Int. J. Eng. Sci. 16(3), 173–183 (1978)

    Article  MathSciNet  Google Scholar 

  24. Chandrasekharaiah, D.S.: Heat-flux dependent micropolar thermoelasticity. Int. J. Eng. Sci. 24(8), 1389–1395 (1986)

    Article  Google Scholar 

  25. Boschi, E., Ieşan, D.: A generalized theory of linear micropolar thermoelasticity. Meccanica 8(3), 154–157 (1973)

    Article  Google Scholar 

  26. Nowacki, W.: Couple stresses in the theory of thermoelasticity I. Bull Acad. Polon. Sci. Ser. Sci. Tech. 14, 129–138 (1966)

    Google Scholar 

  27. Nowacki, W.: Couple stresses in the theory of thermoelasticity II. Bull Acad. Polon. Sci. Ser. Sci. Tech. 14, 263–272 (1966)

    Google Scholar 

  28. Nowacki, W.: Couple stresses in the theory of thermoelasticity III. Bull Acad. Polon. Sci. Ser. Sci. Tech. 14, 801–809 (1966)

    Google Scholar 

  29. Tauchert, T.R., Claus, W.D., Jr., Ariman, T.: The linear theory of micropolar thermoelasticity. Int. J. Eng. Sci. 6, 37–47 (1968)

    Article  Google Scholar 

  30. Dhaliwal R.S., Singh A.: Micropolar thermoelasticity. In: Hetnarski, R. (ed) Thermal Stresses II, Mechanical and Mathematical Methods, ser 2. North Holland, Amsterdam (1987)

  31. Chandrasekharaiah, D.S.: Variational and reciprocal principles in micropolar thermoelasticity. Int. J. Eng. Sci. 25, 55–63 (1987)

    Article  MathSciNet  Google Scholar 

  32. Ciarletta, M.: A theory of micropolar thermoelasticity without energy dissipation. J. Therm. Stress. 22, 581–594 (1999)

    Article  MathSciNet  Google Scholar 

  33. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer-Verlag, New York (2002)

    Google Scholar 

  34. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)

    Article  Google Scholar 

  35. Wang, B.L., Li, J.E.: A rigid line inclusion in a nonlocal elastic medium: Mode I deformation. Eng. Fract. Mech. 267, 108433 (2022)

    Article  Google Scholar 

  36. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10(1), 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  37. Abouelregal, A.E., Mohammad-Sedighi, H., Shirazi, A.H., Malikan, M., Eremeyev, V.A.: Computational analysis of an infinite magneto-thermoelastic solid periodically dispersed with varying heat flow based on non-local Moore–Gibson–Thompson approach. Continuum Mech. Thermodyn. 34(4), 1067–1085 (2022)

    Article  MathSciNet  Google Scholar 

  38. Barati, M.R., Zenkour, A.: Investigating instability regions of harmonically loaded refined shear deformable inhomogeneous nanoplates. Iran J. Sci. Technol. Trans. Mech. Eng. 43, 393–404 (2019). https://doi.org/10.1007/s40997-018-0215-4

    Article  Google Scholar 

  39. Jena, S.K., Chakraverty, S., Malikan, M., Mohammad-Sedighi, H.: Hygro-magnetic vibration of the single-walled carbon nanotube with nonlinear temperature distribution based on a modified beam theory and nonlocal strain gradient model. Int. J. Appl. Mech. 12(05), 2050054 (2020)

    Article  Google Scholar 

  40. Ghodrati, B., Yaghootian, A., Ghanbar Zadeh, A., Mohammad-Sedighi, H.: Lamb wave extraction of dispersion curves in micro/nano-plates using couple stress theories. Waves Random Complex media. 28(1), 15–34 (2018)

    Article  MathSciNet  Google Scholar 

  41. Hosseini, S.M.J., Ansari, R., Torabi, J., et al.: Nonlocal strain gradient pull-in study of nanobeams considering various boundary conditions. Iran J. Sci. Technol. Trans. Mech. Eng. 45, 891–909 (2021). https://doi.org/10.1007/s40997-020-00365-6

    Article  Google Scholar 

  42. Eringen, A.C.: Plane waves in nonlocal micropolar elasticity. Int. J. Eng. Sci. 22(8–10), 1113–1121 (1984)

    Article  Google Scholar 

  43. Eringen, A.C.: Vistas of nonlocal continuum physics. Int. J. Eng. Sci. 30(10), 1551–1565 (1992)

    Article  MathSciNet  Google Scholar 

  44. Eringen, A.C.: Microcontinuum Field Theories: I. Foundations and Solids. Springer, New York (1999)

    Book  Google Scholar 

  45. Eringen, A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  46. Tzou, D.Y.: Experimental support for the lagging behavior in heat propagation. J. Thermophys. Heat Transfer 9(4), 686–693 (1995)

    Article  Google Scholar 

  47. Tzou, D.Y.: A unified field approach for heat conduction from macro-to micro-scales. J. Heat Transfer 117(1), 8–16 (1995)

    Article  Google Scholar 

  48. Abouelregal, A.E.: A novel model of nonlocal thermoelasticity with time derivatives of higher order. Math. Methods Appl. Sci. 43(11), 6746–6760 (2020)

    Article  MathSciNet  Google Scholar 

  49. Abouelregal, A.E., Moustapha, M.V., Nofal, T.A., Rashid, S., Ahmad, H.: Generalized thermoelasticity based on higher-order memory-dependent derivative with time delay. Results Phys. 20, 103705 (2021)

    Article  Google Scholar 

  50. Mallik, S.H., Kanoria, M.: Generalized thermoviscoelastic interaction due to periodically varying heat source with three–phase–lag effect. Euro. J. Mech. A/Solids 29, 695–703 (2010)

    Article  Google Scholar 

  51. Lata, P., Singh, S.: Effects of Hall current and nonlocality in a magneto-thermoelastic solid with fractional order heat transfer due to normal load. J. Therm. Stress. 45, 51–64 (2022)

    Article  Google Scholar 

  52. Ezzat, M., Youssef, H.M.: State space approach for conducting magneto-thermoelastic medium with variable electrical and thermal conductivity subjected to ramp-type heating. J. Therm. Stress. 32, 414–427 (2009)

    Article  Google Scholar 

  53. Nadeem, M., He, J.H., He, C.H., Sedighi, H.M., Shirazi, A.: A numerical solution of nonlinear fractional newell-whitehead-segel equation using natural transform. TWMS J. Pure Appl. Math. 13(2), 168–182 (2022)

    Google Scholar 

  54. Atta, D.: Thermal diffusion responses in an infinite medium with a spherical cavity using the Atangana-Baleanu fractional operator. J. Appl. Comput. Mech. 8(4), 1358–1369 (2022). https://doi.org/10.22055/jacm.2022.40318.3556

    Article  MathSciNet  Google Scholar 

  55. Azizpooryan, M., Noormohammadi, N., Boroomand, B.: Equilibrated basis functions for static analysis of in-plane heterogeneous laminated composite plates in boundary and meshfree approaches. Iran J. Sci. Technol. Trans. Mech. Eng. 46, 957–984 (2022)

    Article  Google Scholar 

  56. Sae-Long, W., Limkatanyu, S., Sukontasukkul, P., Damrongwiriyanupap, N., Rungamornrat, J., Prachasaree, W.: Fourth-order strain gradient bar-substrate model with nonlocal and surface effects for the analysis of nanowires embedded in substrate media. Facta Universitatis. Ser. Mech. Eng. 19(4), 657–680 (2021)

    Article  Google Scholar 

  57. Sim, L.C., Yeo, W.H., Purbolaksono, J., Saw, L.H., Tey, J.Y., Lee, J.V., Yew, M.C.: Thermomechanical stresses of multilayered wellbore structure of underground hydrogen storage: a simplified solution based on recursive algorithm. J. Appl. Comput. Mech. 8(4), 1287–1298 (2022). https://doi.org/10.22055/jacm.2022.39453.3411

    Article  Google Scholar 

  58. Koochi, A., Goharimanesh, M.: Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: the energy balance method. Rep. Mech. Eng. 2(1), 41–50 (2021)

    Article  Google Scholar 

  59. Jha, B.K., Danjuma, Y.J.: Transient Dean flow in a channel with suction/injection: a semi-analytical approach. Proc. Inst. Mech. Eng. Part E: J. Process Mech. Eng. 233(5), 1036–1044 (2019)

    Article  Google Scholar 

  60. Honig, G., Hirdes, U.: A method for the numerical inversion of Laplace Transforms. Comp. App. Math. 10(1), 113–132 (1984)

    MathSciNet  Google Scholar 

  61. Tzou, D.Y.: Macro to Microscale Heat Transfer: the Lagging Behavior. Taylor and Francis, Washington, D.C (1997)

    Google Scholar 

  62. Kumar, S., Kadian, A., Kalkal, K.K.: Dual-phase-lag model for a nonlocal micropolar thermoelastic half-space subjected to gravitational field and inclined load. Int. J. Numer. Meth. Heat Fluid Flow 32(6), 1999–2026 (2022)

    Article  Google Scholar 

  63. Yang, W., Chen, Z.: Nonlocal dual-phase-lag heat conduction and the associated nonlocal thermal-viscoelastic analysis. Int. J. Heat Mass Transf. 156, 119752 (2020)

    Article  Google Scholar 

  64. Li, X.F., Zhang, H., Lee, K.Y.: Dependence of Young׳s modulus of nanowires on surface effect. Int. J. Mech. Sci. 81, 120–125 (2014)

    Article  Google Scholar 

  65. Kambali, P.N., Pandey, A.K.: Surface and nonlocal effects on response of linear and nonlinear NEMS devices. Appl. Math. Model. 43, 252–267 (2017)

    Article  MathSciNet  Google Scholar 

  66. Yu, Y.J., Xue, Z.N., Li, C.L., Tian, X.G.: Buckling of nanobeams under nonuniform temperature based on nonlocal thermoelasticity. Compos. Struct. 146, 108–113 (2016)

    Article  Google Scholar 

  67. Strikwerda, J.C., Scott, A.M.: Thermoelastic response to a short laser pulse. J. Therm. Stresses 7(1), 1–17 (1984)

    Article  Google Scholar 

  68. Abouelregal, A.E., Dassios, I., Moaaz, O.: Moore–Gibson–Thompson thermoelastic model effect of laser-induced microstructures of a microbeam sitting on visco-pasternak foundations. Appl. Sci. 12, 9206 (2022)

    Article  Google Scholar 

  69. Tang, D.W., Araki, N.: The wave characteristics of thermal conduction in metallic films irradiated by ultra-short laser pulses. J. Phys. D Appl. Phys. 29, 2527–2533 (1996)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors thank the Deanship of Scientific Research at Jouf University for funding this work through research Grant No. (DSR2022-RG-0137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid M. Sedighi.

Ethics declarations

Conflict of interest

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouelregal, A.E., Nasr, M.E., Moaaz, O. et al. Thermo-magnetic interaction in a viscoelastic micropolar medium by considering a higher-order two-phase-delay thermoelastic model. Acta Mech 234, 2519–2541 (2023). https://doi.org/10.1007/s00707-023-03513-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03513-6

Navigation