Skip to main content
Log in

Application scope studies of analytical methods based on the equivalent single-layer and layerwise theories for vibration analysis of symmetric sandwich plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

This paper proposes two analytical methods to predict free and forced vibrations of symmetric sandwich plates in vacuum and water. The application scopes of the two methods are investigated. Displacement fields of the plates are described by the first-order shear deformation theory. The two methods are, respectively, built via the equivalent single-layer (ESL) theory and layerwise (LW) theory. The equations of motion are derived through Hamilton’s principle. The Helmholtz and Euler’s equations are utilized to represent the acoustic pressure in water domain and the continuities on acoustic-structure coupling faces. Through assuming the submerged sandwich as a thin plate, the formulas of transverse vibration in the two analytical models are reconstructed. The Navier method is employed to solve the new equations of the plates with simply supported boundaries at four sides. The obtained analytical nature frequencies and forced vibration responses are compared with the existing ones in the literature, and numerical results from the finite element method (FEM) and coupling finite element and boundary element method (FEM/BEM). Accuracies of the ESL and LW methods are studied for the hard or soft core case. The application scope of the ESL method is further analyzed by taking the fundamental frequency of the plates in vacuum as the evaluation object. Through five-level discussions which consider effects of the Young’s modulus ratio of core to panel, the thickness ratio of core to panel, the length–thickness ratio and the length–width ratio of the sandwich plate, a general quantitative critical dimensionless parameter is designed to determine the application scope of the ESL method and distinguish the hard or soft core.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons.

References

  1. Sayyad, A.S., Ghugal, Y.M.: On the free vibration analysis of laminated composite and sandwich plates: A review of recent literature with some numerical results. Compos. Struct. 129(10), 177–201 (2015)

    Google Scholar 

  2. Kirchhoff, G.: Ber das gleichgewicht und die bewegung einer elastischen scheibe. J. Reine Angew. Math. 40, 51–88 (1850)

    MathSciNet  MATH  Google Scholar 

  3. Mindlin, R.D.: Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. J. Appl. Mech. 18(1), 31–38 (1951)

    MATH  Google Scholar 

  4. Reddy, J.N.: A simple higher-order theory for laminated composite plates. J. Appl. Mech. 51(4), 745–752 (1984)

    MATH  Google Scholar 

  5. Shimpi, R.P.: Zeroth-order shear deformation theory for plates. AIAA. J. 37(4), 524–526 (1999)

    Google Scholar 

  6. Stein, M.: Nonlinear theory for plates and shells including the effects of transverse shearing. AIAA. J. 24(9), 1537–1544 (1986)

    MATH  Google Scholar 

  7. Touratier, M.: An efficient standard plate theory. Int. J. Eng. Sci. 29(8), 901–916 (1991)

    MATH  Google Scholar 

  8. Shimpi, R.P., Arya, H., Naik, N.K.: A higher order displacement model for the plate analysis. J. Reinf. Plast. Compos. 22(18), 1667–1688 (2003)

    Google Scholar 

  9. Ghugal, Y.M., Sayyad, A.S.: Free vibration of thick orthotropic plates using trigonometric shear deformation theory. Lat. Am. J. Solids Struct. 8(3), 229–243 (2011)

    MATH  Google Scholar 

  10. Ghugal, Y.M., Sayyad, A.S.: Stress analysis of thick laminated plates using trigonometric shear deformation theory. Int. J. Appl. Mech. 5(1), 1350003 (2013)

    Google Scholar 

  11. Sayyada, A.S., Ghugalb, Y.M.: Bending and free vibration analysis of thick isotropic plates by using exponential shear deformation theory. Appl. Comput. Mech. 6(1), 1298–1314 (2012)

    Google Scholar 

  12. Shimpi, R.P., Patel, H.G.: Free vibrations of plate using two variable refined plate theory. J. Sound. Vibr. 296(4–5), 979–999 (2006)

    Google Scholar 

  13. Kumar, A., Chakrabarti, A., Bhargava, P.: Accurate dynamic response of laminated composites and sandwich shells using higher order zigzag theory. Thin-Walled Struct. 77, 174–186 (2014)

    Google Scholar 

  14. Reddy, J.N.: On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27(2), 361–382 (1989)

    MathSciNet  MATH  Google Scholar 

  15. Ray, M.C.: Zeroth-order shear deformation theory for laminated composite plates. J. Appl. Mech. 70(3), 374–380 (2003)

    MATH  Google Scholar 

  16. Matsunaga, H.: Vibration and stability of cross-ply laminated composite plates according to a global higher-order plate theory. Compos. Struct. 48(4), 231–244 (2000)

    Google Scholar 

  17. Matsunaga, H.: Free vibration and stability of angle-ply laminated composite and sandwich plates under thermal loading. Compos. Struct. 77(2), 249–262 (2007)

    Google Scholar 

  18. Zenkour, A.M.: A comprehensive analysis of functionally graded sandwich plates: part 2-Buckling and free vibration. Int. J. Solids Struct. 42(18–19), 5243–5258 (2005)

    MATH  Google Scholar 

  19. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new higher order shear deformation theory for sandwich and composite laminated plates. Compos. Part B Eng. 43(3), 1489–1499 (2012)

    Google Scholar 

  20. Mantari, J.L., Oktem, A.S., Soares, C.G.: A new trigonometric shear deformation theory for isotropic, laminated composite and sandwich plates. Int. J. Solids. Struct. 49(1), 43–53 (2012)

    Google Scholar 

  21. Mantari, J.L., Oktem, A.S., Soares, C.G.: Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory. Compos. Struct. 94(1), 37–49 (2011)

    Google Scholar 

  22. Bessaim, A., Houari, M.S., Tounsi, A., Mahmoud, S.R., Bedia, E.: A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets. J. Sandw. Struct. Mater. 15(6), 671–703 (2013)

    Google Scholar 

  23. Thai, C.H., Kulasegaram, S., Tran, L.V., Nguyen-Xuan, H.: Generalized shear deformation theory for functionally graded isotropic and sandwich plates based on isogeometric approach. Comput. Struct. 141, 94–112 (2014)

    Google Scholar 

  24. Li, J., Hu, X., Li, X.: Free vibration analyses of axially loaded laminated composite beams using a unified higher-order shear deformation theory and dynamic stiffness method. Compos. Struct. 158, 308–322 (2016)

    Google Scholar 

  25. Zhou, K., Lin, Z., Huang, X., Hua, H.: Vibration and sound radiation analysis of temperature-dependent porous functionally graded material plates with general boundary conditions. Appl. Acoust. 154, 236–250 (2019)

    Google Scholar 

  26. Sekkal, M., Fahsi, B., Tounsi, A., Mahmoud, S.: A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate. Steel. Compos. Struct. 25(4), 389–401 (2017)

    Google Scholar 

  27. Remil, A.: A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates. Struct. Eng. Mech. 70(3), 325–337 (2019)

    Google Scholar 

  28. Attia, A., et al.: Free vibration analysis of FG plates under thermal environment via a simple 4-unknown HSDT. Steel. Compos. Struct. 41(6), 899–910 (2021)

    Google Scholar 

  29. Alazwari, M.A., Daikh Ahmed, A., Eltaher, M.A.: Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates. Adv. Nano. Res. 12(2), 117–137 (2022)

    Google Scholar 

  30. Heuer, R.: Static and dynamic analysis of transversely isotropic, moderately thick sandwich beams by analogy. Acta. Mech. 91(1–2), 1–9 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Adam, C.: Dynamic analysis of isotropic composite plates using a layerwise theory. Compos. Struct. 51(4), 427–437 (2001)

    Google Scholar 

  32. Adam, C.: Eigenstrain induced vibrations of composite plates. Acta. Mech. 148(1), 35–53 (2001)

    MATH  Google Scholar 

  33. Lee, D., Waas, A.M., Karnopp, B.H.: Analysis of a rotating multi-layer annular plate modeled via layerwise zig-zag theory: free vibration and transient analysis. Comput. Struct. 66(2), 313–335 (1998)

    MATH  Google Scholar 

  34. Carrera, E.: Multilayered shell theories accounting for layerwise mixed description, part 1: governing equations. AIAA. J. 37(9), 1107–1116 (1999)

    Google Scholar 

  35. Shimpi, R.P., Ainapure, A.V.: Free vibration of two-layered cross-ply laminated plates using layer-wise trigonometric shear deformation theory. J. Reinf. Plast. Compos. 23(4), 389–405 (2004)

    Google Scholar 

  36. Ferreira, A.J.M., Roque, C.M.C., Jorge, R.M.N., Kansa, E.J.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and multiquadrics discretizations. Eng. Anal. Bound. Elem. 29(12), 1104–1114 (2005)

    MATH  Google Scholar 

  37. Roque, C.M.C., Ferreira, A.J.M., Jorge, R.M.N.: Free vibration analysis of composite and sandwich plates by a trigonometric layerwise deformation theory and radial basis functions. J. Sandw. Struct. Mater. 8(6), 497–515 (2006)

    Google Scholar 

  38. Malekzadeh, P., Farid, M., Zahedinejad, P.: A three-dimensional layerwise-differential quadrature free vibration analysis of laminated cylindrical shells. Int. J. Press. Vessels Pip. 85(7), 450–458 (2008)

    Google Scholar 

  39. Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C.: Analysis of laminated doubly-curved shells by a layerwise theory and radial basis functions collocation, accounting for through-the-thickness deformations. Comput. Mech. 48(1), 13–25 (2011)

    MATH  Google Scholar 

  40. Ferreira, A.J.M., Roque, C.M.C., Carrera, E., Cinefra, M., Polit, O.: Bending and vibration of laminated plates by a layerwise formulation and collocation with radial basis functions. Mech. Adv. Mater. Struct. 20(8), 624–637 (2013)

    Google Scholar 

  41. Li, X., Yu, K.: Vibration and acoustic responses of composite and sandwich panels under thermal environment. Compos. Struct. 131, 1040–1049 (2015)

    Google Scholar 

  42. Sharma, N., Kumar Swain, P., Kumar Maiti, D., Nath Singh, B.: Vibration and uncertainty analysis of functionally graded sandwich plate using layerwise theory. AIAA. J. 60(6), 3402–3423 (2022)

    Google Scholar 

  43. Guo, Y., Huang, B., Hua, L., Chen, J., and Wang, J.: Modeling of partially delaminated composite plates resting on two-parameter elastic foundation with improved layerwise theory. Mech. Adv. Mater. Struct., 1–16 (2022)

  44. Pandey, S., Pradyumna, S.: Free vibration of functionally graded sandwich plates in thermal environment using a layerwise theory. Eur. J. Mech. A-Solids 51, 55–66 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Do, V., Lee, C.H.: Isogeometric layerwise formulation for bending and free vibration analysis of laminated composite plates. Acta. Mech. 232(4), 1329–1351 (2021)

    MathSciNet  MATH  Google Scholar 

  46. Liu, N., Jeffers, A.E.: Isogeometric analysis of laminated composite and functionally graded sandwich plates based on a layerwise displacement theory. Compos. Struct. 176(9), 143–153 (2017)

    Google Scholar 

  47. Thai, C.H., Ferreira, A., Carrera, E., Nguyen-Xuan, H.: Isogeometric analysis of laminated composite and sandwich plates using a layerwise deformation theory. Compos. Struct. 104(10), 196–214 (2013)

    Google Scholar 

  48. Hirane, H., Belarbi, M. O., Houari, M. S. A., and Tounsi, A.: On the layerwise finite element formulation for static and free vibration analysis of functionally graded sandwich plates. Eng. Comput., 1–29 (2021)

  49. Pandey, S., Pradyumna, S.: A new C0 higher-order layerwise finite element formulation for the analysis of laminated and sandwich plates. Compos. Struct. 131(11), 1–16 (2015)

    Google Scholar 

  50. Shashank, P., Pradyumna, S.: Analysis of functionally graded sandwich plates using a higher-order layerwise theory. Compos. Part B-Eng. 153, 325–336 (2018)

    Google Scholar 

  51. Zhao, R., Yu, K., Hulbert, G.M., Wu, Y., Li, X.: Piecewise shear deformation theory and finite element formulation for vibration analysis of laminated composite and sandwich plates in thermal environments. Compos. Struct. 160, 1060–1083 (2017)

    Google Scholar 

  52. Shariyat, M.: A generalized global–local high-order theory for bending and vibration analyses of sandwich plates subjected to thermo-mechanical loads. Int. J. Mech. Sci. 52(3), 495–514 (2010)

    MathSciNet  Google Scholar 

  53. Laulagnet, B.: Sound radiation by a simply supported unbaffled plate. J. Acoust. Soc. Am. 103(5), 2451–2462 (1998)

    Google Scholar 

  54. Wang, Z.M., Liu, G.X., Lu, M.S.: The finite deflection equations of anisotropic laminated shallow shells. Appl. Math. Mech. 3(1), 49–65 (1982)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China [Grand Nos. 52071152 and 52171290].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meixia Chen or Ying Li.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The coefficients in Eq. (24) are

$$\left\{ \begin{gathered} R_{11} = - D_{11} \alpha^{2} - D_{66} \beta^{2} - C_{55} + \overline{\rho }_{2} \omega^{2} , \, R_{12} = - (D_{12} + D_{66} )\alpha \beta , \, R_{13} = - C_{55} \alpha , \, \\ R_{21} = - (D_{12} + D_{66} )\alpha \beta , \, R_{22} = - D_{66} \alpha^{2} - D_{22} \beta^{2} - C_{44} + \overline{\rho }_{2} \omega^{2} , \, R_{23} = - C_{44} \beta , \, \\ R_{31} = - \alpha C_{55} \gamma_{mn \, mn} , \, R_{32} = - \beta C_{44} \gamma_{mn \, mn} , \\ R_{33} = ( - C_{55} \alpha^{2} - C_{44} \beta^{2} + \overline{\rho }_{0} \omega^{2} )\gamma_{mn \, mn} + \rho_{0} \omega^{2} g(m,m,L_{x} )g(n,n,L_{y} ) \\ \end{gathered} \right.$$
(A1)

where

$$f(n_{1} ,n_{2} ,l_{0} ) = \int_{0}^{{l_{0} }} {\cos \frac{{n_{1} \pi \xi }}{{l_{0} }}\cos \frac{{n_{2} \pi \xi }}{{l_{0} }}} {\rm{d}}\xi = \left\{ {\begin{array}{*{20}c} {0\;\;,\; \, n_{1} \ne n_{2} } \\ {{{l_{0} } \mathord{\left/ {\vphantom {{l_{0} } {2,}}} \right. \kern-\nulldelimiterspace} {2,}}\;n_{1} = n_{2} } \\ \end{array} } \right.$$
(A2)
$$g(n_{1} ,n_{2} ,l_{0} ) = \int_{0}^{{l_{0} }} {\sin \frac{{n_{1} \pi \xi }}{{l_{0} }}\sin \frac{{n_{2} \pi \xi }}{{l_{0} }}} {\rm{d}}\xi = \left\{ {\begin{array}{*{20}c} {0\;\;,\; \, \;n_{1} \ne n_{2} } \\ {{{l_{0} } \mathord{\left/ {\vphantom {{l_{0} } 2}} \right. \kern-\nulldelimiterspace} 2},\;n_{1} = n_{2} } \\ \end{array} } \right.$$
(A3)
$$\begin{gathered} \gamma_{pq \, mn} = \int_{{S_{p} }} {\int_{{S_{p} }} {\sin \frac{m\pi x}{{L_{x} }}\sin \frac{n\pi y}{{L_{y} }}\sin \frac{p\pi x}{{L_{x} }}\sin \frac{q\pi y}{{L_{y} }}\left. {\frac{{\partial^{2} G(M,M_{0} )}}{{\partial z_{M} \partial z_{0} }}} \right|_{{z_{M} ,z_{0} = 0}} } } {\rm{d}}x{\rm{d}}y{\rm{d}}x_{0} {\rm{d}}y_{0} \hfill \\ \qquad = 2jL_{x}^{2} L_{y}^{2} \pi^{2} \int_{0}^{\infty } {\int_{0}^{\infty } {\frac{{pqmn\sqrt {k_{0}^{2} - k_{x}^{2} - k_{y}^{2} } (1 - ( - 1)^{p} \cos k_{x} L_{x} )(1 - ( - 1)^{q} \cos k_{y} L_{y} )}}{{(L_{x}^{2} k_{x}^{2} - p^{2} \pi^{2} )(L_{y}^{2} k_{y}^{2} - q^{2} \pi^{2} )(L_{x}^{2} k_{x}^{2} - m^{2} \pi^{2} )(L_{y}^{2} k_{y}^{2} - n^{2} \pi^{2} )}}{\rm{d}}k_{x} {\rm{d}}k_{y} } } \hfill \\ \end{gathered}$$
(A4)

Appendix B

The coefficients in Eq. (26) are

$$O_{pq} = - \sum\limits_{m = 1}^{M} {\sum\limits_{n = 1}^{N} {q_{zmn} \gamma_{pq \, mn} } }$$
(B1)
$$\left\{ \begin{gathered} T11(...) = R_{11} f(p,m,L_{x} )g(q,n,L_{y} ) \\ T12(...) = R_{12} f(p,m,L_{x} )g(q,n,L_{y} ) \\ T13(...) = R_{13} f(p,m,L_{x} )g(q,n,L_{y} ) \\ \end{gathered} \right. \, \left\{ \begin{gathered} T21(...) = R_{21} g(p,m,L_{x} )f(q,n,L_{y} ) \\ T22(...) = R_{22} g(p,m,L_{x} )f(q,n,L_{y} ) \\ T23(...) = \, R_{23} g(p,m,L_{x} )f(q,n,L_{y} ) \\ \end{gathered} \right.$$
(B2)
$$\left\{ \begin{gathered} T31(...) = - \alpha C_{55} \gamma_{pq \, mn} , \, T32(...) = - \beta C_{44} \gamma_{pq \, mn} \\ T33(...) = ( - C_{55} \alpha^{2} - C_{44} \beta^{2} + \overline{\rho }_{0} \omega^{2} )\gamma_{pq \, mn} { + }\rho_{0} \omega^{2} g(p,m,L_{x} )g(q,n,L_{y} ) \\ \end{gathered} \right.$$
(B3)

in which \(Tij\left( {...} \right)\) denotes \(Tij\left( {pN - N + q,mN - N + n} \right)\).

Appendix C

The coefficients in Eq. (47) are

$$\left\{ \begin{gathered} \overline{R}_{11} = \sum\limits_{k = 1}^{3} {( - C_{55}^{\left( k \right)} \alpha^{2} - C_{44}^{\left( k \right)} \beta^{2} + \rho_{0}^{\left( k \right)} \omega^{2} )} \gamma_{mn \, mn} + \rho_{0} \omega^{2} g(m,m,L_{x} )g(n,n,L_{y} ), \, \hfill \\ \left\{ {\overline{R}_{12} , \, \overline{R}_{14} , \, \overline{R}_{16} } \right\} = - \alpha \left\{ {C_{55}^{\left( 1 \right)} , \, C_{55}^{\left( 2 \right)} , \, C_{55}^{\left( 3 \right)} } \right\}\gamma_{mn \, mn} , \hfill \\ \left\{ {\overline{R}_{13} , \, \overline{R}_{15} , \, \overline{R}_{17} } \right\} = - \beta \left\{ {C_{44}^{\left( 1 \right)} , \, C_{44}^{\left( 2 \right)} , \, C_{44}^{\left( 3 \right)} } \right\}\gamma_{mn \, mn} \hfill \\ \end{gathered} \right.$$
(C1)
$$\left\{ \begin{gathered} \overline{R}_{21} = - C_{55}^{\left( 1 \right)} \alpha , \hfill \\ \overline{R}_{22} = - (h_{1}^{2} A_{11}^{\left( 1 \right)} {/4} + D_{11}^{\left( 1 \right)} )\alpha^{2} - (h_{1}^{2} A_{66}^{\left( 1 \right)} {/4} + D_{66}^{\left( 1 \right)} )\beta^{2} - C_{55}^{\left( 1 \right)} + (h_{1}^{2} \rho_{0}^{\left( 1 \right)} {/4} + \rho_{2}^{\left( 1 \right)} )\omega^{2} \hfill \\ \overline{R}_{23} = - [h_{1}^{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} ){/4} + D_{12}^{\left( 1 \right)} + D_{66}^{\left( 1 \right)} ]\alpha \beta , \hfill \\ \overline{R}_{24} = h_{1} h_{2} ( - A_{11}^{\left( 1 \right)} \alpha^{2} - A_{66}^{\left( 1 \right)} \beta^{2} + \rho_{0}^{\left( 1 \right)} \omega^{2} ){/4}, \hfill \\ \overline{R}_{25} = - h_{1} h_{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} )\alpha \beta {/4, }\overline{R}_{26} = 0{, }\overline{R}_{27} = 0 \hfill \\ \end{gathered} \right.$$
(C2)
$$\left\{ \begin{gathered} \overline{R}_{31} = - C_{44}^{\left( 1 \right)} \beta , \hfill \\ \overline{R}_{32} = - [h_{1}^{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} ){/4} + D_{12}^{\left( 1 \right)} + D_{66}^{\left( 1 \right)} ]\alpha \beta , \hfill \\ \overline{R}_{33} = - (h_{1}^{2} A_{22}^{\left( 1 \right)} {/4} + D_{22}^{\left( 1 \right)} )\beta^{2} - (h_{1}^{2} A_{66}^{\left( 1 \right)} {/4} + D_{66}^{\left( 1 \right)} )\alpha^{2} - C_{44}^{\left( 1 \right)} + (h_{1}^{2} \rho_{0}^{\left( 1 \right)} {/4} + \rho_{2}^{\left( 1 \right)} )\omega^{2} , \hfill \\ \overline{R}_{34} = - h_{1} h_{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} )\alpha \beta {/4}, \hfill \\ \overline{R}_{35} = h_{1} h_{2} ( - A_{22}^{\left( 1 \right)} \beta^{2} - A_{66}^{\left( 1 \right)} \alpha^{2} + \rho_{0}^{\left( 1 \right)} \omega^{2} ){/4, }\overline{R}_{36} = 0{, }\overline{R}_{37} = 0 \hfill \\ \end{gathered} \right.$$
(C3)
$$\left\{ \begin{gathered} \overline{R}_{41} = - C_{55}^{\left( 2 \right)} \alpha {,} \hfill \\ \overline{R}_{42} = h_{1} h_{2} [ - A_{11}^{\left( 1 \right)} \alpha^{2} - A_{66}^{\left( 1 \right)} \beta^{2} + \rho_{0}^{\left( 1 \right)} \omega^{2} ]{/}4{, }\overline{R}_{43} = - h_{1} h_{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} )\alpha \beta {/}4{, } \hfill \\ \overline{R}_{44} = - [h_{2}^{2} (A_{11}^{\left( 1 \right)} + A_{11}^{\left( 3 \right)} ){/}4 + D_{11}^{\left( 2 \right)} ]\alpha^{2} - [h_{2}^{2} (A_{66}^{\left( 1 \right)} + A_{66}^{\left( 3 \right)} ){/}4 + D_{66}^{\left( 2 \right)} ]\beta^{2} \hfill \\ \, - C_{55}^{\left( 2 \right)} + [h_{2}^{2} (\rho_{0}^{\left( 1 \right)} + \rho_{0}^{\left( 3 \right)} ){/}4 + \rho_{2}^{\left( 2 \right)} ]\omega^{2} , \hfill \\ \overline{R}_{45} = - [h_{2}^{2} (A_{12}^{\left( 1 \right)} + A_{12}^{\left( 3 \right)} + A_{66}^{\left( 1 \right)} + A_{66}^{\left( 3 \right)} ){/4} + D_{12}^{\left( 2 \right)} + D_{66}^{\left( 2 \right)} ]\alpha \beta {,} \hfill \\ \overline{R}_{46} = h_{2} h_{3} ( - A_{11}^{\left( 3 \right)} \alpha^{2} - A_{66}^{\left( 3 \right)} \beta^{2} + \rho_{0}^{\left( 3 \right)} \omega^{2} ){/4, }\overline{R}_{47} = - h_{2} h_{3} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} )\alpha \beta {/}4 \hfill \\ \end{gathered} \right.$$
(C4)
$$\left\{ \begin{gathered} \overline{R}_{51} = - C_{44}^{\left( 2 \right)} \beta {,} \hfill \\ \overline{R}_{52} = - h_{1} h_{2} (A_{12}^{\left( 1 \right)} + A_{66}^{\left( 1 \right)} )\alpha \beta {/}4{, }\overline{R}_{53} = h_{1} h_{2} [ - A_{22}^{\left( 1 \right)} \beta^{2} - A_{66}^{\left( 1 \right)} \alpha^{2} + \rho_{0}^{\left( 1 \right)} \omega^{2} ]{/}4{, } \hfill \\ \overline{R}_{54} = - [h_{2}^{2} (A_{12}^{\left( 1 \right)} + A_{12}^{\left( 3 \right)} + A_{66}^{\left( 1 \right)} + A_{66}^{\left( 3 \right)} ){/4} + D_{12}^{\left( 2 \right)} + D_{66}^{\left( 2 \right)} ]\alpha \beta , \hfill \\ \overline{R}_{55} = - [h_{2}^{2} (A_{22}^{\left( 1 \right)} + A_{22}^{\left( 3 \right)} ){/}4 + D_{22}^{\left( 2 \right)} ]\beta^{2} - [h_{2}^{2} (A_{66}^{\left( 1 \right)} + A_{66}^{\left( 3 \right)} ){/}4 + D_{66}^{\left( 2 \right)} ]\alpha^{2} \hfill \\ \, - C_{44}^{\left( 2 \right)} + [h_{2}^{2} (\rho_{0}^{\left( 1 \right)} + \rho_{0}^{\left( 3 \right)} ){/}4 + \rho_{2}^{\left( 2 \right)} ]\omega^{2} {,} \hfill \\ \overline{R}_{56} = - h_{2} h_{3} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} )\alpha \beta {/}4{, }\overline{R}_{57} = h_{2} h_{3} ( - A_{22}^{\left( 3 \right)} \beta^{2} - A_{66}^{\left( 3 \right)} \alpha^{2} + \rho_{0}^{\left( 3 \right)} \omega^{2} ){/4} \hfill \\ \end{gathered} \right.$$
(C5)
$$\left\{ \begin{gathered} \overline{R}_{61} = - C_{55}^{\left( 3 \right)} \alpha {, }\overline{R}_{62} = 0{, }\overline{R}_{63} = 0{, } \hfill \\ \overline{R}_{64} = h_{2} h_{3} ( - A_{11}^{\left( 3 \right)} \alpha^{2} - A_{66}^{\left( 3 \right)} \beta^{2} + \rho_{0}^{\left( 3 \right)} \omega^{2} ){/4, }\overline{R}_{65} = - h_{2} h_{3} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} )\alpha \beta {/4,} \hfill \\ \overline{R}_{66} = - (h_{3}^{2} A_{11}^{\left( 3 \right)} {/4} + D_{11}^{\left( 3 \right)} )\alpha^{2} - \left( {h_{3}^{2} A_{66}^{\left( 3 \right)} {/4} + D_{66}^{\left( 3 \right)} } \right)\beta^{2} - C_{55}^{\left( 3 \right)} + \left( {h_{3}^{2} \rho_{0}^{\left( 3 \right)} {/4} + \rho_{2}^{\left( 3 \right)} } \right)\omega^{2} {,} \hfill \\ \overline{R}_{67} = - [h_{3}^{2} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} ) + D_{12}^{\left( 3 \right)} + D_{66}^{\left( 3 \right)} ]\alpha \beta \hfill \\ \end{gathered} \right.$$
(C6)
$$\left\{ \begin{gathered} \overline{R}_{71} = - C_{44}^{\left( 3 \right)} \beta {, }\overline{R}_{72} = 0{, }\overline{R}_{73} = 0{, } \hfill \\ \overline{R}_{74} = - h_{2} h_{3} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} )\alpha \beta {/4, }\overline{R}_{75} = h_{2} h_{3} ( - A_{22}^{\left( 3 \right)} \beta^{2} - A_{66}^{\left( 3 \right)} \alpha^{2} + \rho_{0}^{\left( 3 \right)} \omega^{2} ){/4,} \hfill \\ \overline{R}_{76} = - [h_{3}^{2} (A_{12}^{\left( 3 \right)} + A_{66}^{\left( 3 \right)} ) + D_{12}^{\left( 3 \right)} + D_{66}^{\left( 3 \right)} ]\alpha \beta {, } \hfill \\ \overline{R}_{77} = - (h_{3}^{2} A_{22}^{\left( 3 \right)} {/4} + D_{22}^{\left( 3 \right)} )\beta^{2} - \left( {h_{3}^{2} A_{66}^{\left( 3 \right)} {/4} + D_{66}^{\left( 3 \right)} } \right)\alpha^{2} - C_{44}^{\left( 3 \right)} + \left( {h_{3}^{2} \rho_{0}^{\left( 3 \right)} {/4} + \rho_{2}^{\left( 3 \right)} } \right)\omega^{2} \hfill \\ \end{gathered} \right.$$
(C7)

Appendix D

The coefficients in Eq. (49) are

$$\left\{ \begin{gathered} \overline{T}11(...) = \sum\limits_{k = 1}^{3} {\left( { - C_{55}^{\left( k \right)} \alpha^{2} - C_{44}^{\left( k \right)} \beta^{2} + \rho_{0}^{\left( k \right)} \omega^{2} } \right)} \gamma_{pq \, mn} { + }\rho_{0} \omega^{2} g(p,m,L_{x} )g(q,n,L_{y} ) \hfill \\ \left( {\overline{T}12(...), \, \overline{T}14(...), \, \overline{T}16(...)} \right) = - \alpha \left( {C_{55}^{\left( 1 \right)} , \, C_{55}^{\left( 2 \right)} , \, C_{55}^{\left( 3 \right)} } \right)\gamma_{pq \, mn} \hfill \\ \left( {\overline{T}13(...), \, \overline{T}15(...), \, \overline{T}17(...)} \right) = - \beta \left( {C_{44}^{\left( 1 \right)} , \, C_{44}^{\left( 2 \right)} , \, C_{44}^{\left( 3 \right)} } \right)\gamma_{pq \, mn} \hfill \\ \end{gathered} \right.$$
(D1)
$$\left\{ \begin{gathered} \overline{T}2j(...) = \overline{R}_{2j} f(p,m,L_{x} )g(q,n,L_{y} ) \, \overline{T}3j(...) = \overline{R}_{3j} g(p,m,L_{x} )f(q,n,L_{y} ) \hfill \\ \overline{T}4j(...) = \overline{R}_{4j} f(p,m,L_{x} )g(q,n,L_{y} ) \, \overline{T}5j(...) = \overline{R}_{5j} g(p,m,L_{x} )f(q,n,L_{y} ) \hfill \\ \overline{T}6j(...) = \overline{R}_{6j} f(p,m,L_{x} )g(q,n,L_{y} ) \, \overline{T}7j(...) = \overline{R}_{7j} g(p,m,L_{x} )f(q,n,L_{y} ) \hfill \\ \end{gathered} \right.$$
(D2)

in which \(Tij\left( {...} \right)\) denotes \(Tij\left( {pN - N + q,mN - N + n} \right)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Chen, M. & Li, Y. Application scope studies of analytical methods based on the equivalent single-layer and layerwise theories for vibration analysis of symmetric sandwich plates. Acta Mech 234, 377–401 (2023). https://doi.org/10.1007/s00707-022-03392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03392-3

Navigation