Skip to main content
Log in

Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The nonlinear vibration response of a functionally graded carbon nanotube (CNT)-reinforced composite conical shell subjected to external excitation is investigated by a stress function method, and the motion state of the conical shell is revealed. Firstly, the motion equations of the conical shell are derived in the frame of the Hamilton principle and the von Kármán nonlinearity. Thereafter, the coupled nonlinear ordinary differential equations are obtained by the Galerkin method and are simplified by a stress function method. In the end, the nonlinear vibration response of the functionally graded carbon nanotube-reinforced composite conical shell is analyzed using the multi-scale method and the Runge-Kutta method. The effects of various parameters such as the volume fraction of carbon nanotube and the distribution patterns are investigated. Results indicate that the functionally graded carbon nanotube-reinforced composite conical shell with X type distribution having higher CNT volume fraction has the lowest vibration amplitude; considering the excitation amplitude as a parameter, the bifurcation behavior is observed under different semi-vertexes; the conical shell has three types of motion states, periodic motion, multi-periodic motion, and chaos motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sun, X., Wang, Y.: Mechanical Properties of Carbon Nanotubes. Appl. Phys. (2001)

  2. Manchado, M.A., Valentini, L., Biagiotti, J., Kenny, J.M.: Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon 43, 1499–1505 (2005)

    Article  Google Scholar 

  3. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  4. Shen, H.S., Zhang, C.L.: Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite plates. Mater. Des. 31, 3403–3411 (2010)

    Article  Google Scholar 

  5. Shen, H.S., Xiang, Y.: Postbuckling of nanotube-reinforced composite cylindrical shells under combined axial and radial mechanical loads in thermal environment. Compos. B Eng. 52, 311–322 (2013)

    Article  Google Scholar 

  6. Han, Y., Elliott, J.: Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput. Mater. Sci. 39, 315–323 (2007)

    Article  Google Scholar 

  7. Yamanouchi, M., Koizumi, M., Hirai, T., Shiota, I.: Overall view of the P/M fabrication o functionally gradient materials. In: Proceedings of the First International Symposium on Functionally Gradient Materials. (1990)

  8. Koizumi, M.: The concept of FGM in functionally graded materials. Funct. Grad. Mater. 34, 3–10 (1993)

    Google Scholar 

  9. Shen, H.S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91, 9–19 (2009)

    Article  Google Scholar 

  10. Yas, M.H., Pourasghar, A., Kamarian, S., Heshmati, M.: Three-dimensional free vibration analysis of functionally graded nanocomposite cylindrical panels reinforced by carbon nanotube. Mater. Des. 49, 583–590 (2013)

    Article  Google Scholar 

  11. Karamanli, A., Aydogdu, M.: Vibration behaviors of two-directional carbon nanotube reinforced functionally graded composite plates. Compos. Struct. 262, 113639 (2021)

    Article  Google Scholar 

  12. Daikh, A.A., Houari, M., Belarbi, M.O., Chakraverty, S.: Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng. Comput. (2022). https://doi.org/10.1007/s00366-021-01413-8

    Article  Google Scholar 

  13. Lei, Z.X., Liew, K.M., Yu, J.L.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite plates using the element-free kp-Ritz method in thermal environment. Compos. Struct. 106, 128–138 (2013)

    Article  Google Scholar 

  14. Ansari, R., Torabi, J., Hasrati, E.: Axisymmetric nonlinear vibration analysis of sandwich annular plates with FG-CNTRC face sheets based on the higher-order shear deformation plate theory. Aeros. Sci. Technol. 77, 306–319 (2018)

    Article  Google Scholar 

  15. Zhang, L.W., Lei, Z.X., Liew, K.M.: Computation of vibration solution for functionally graded carbon nanotube-reinforced composite thick plates resting on elastic foundations using the element-free IMLS-Ritz method. Appl. Math. Comput. 256, 488–504 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Wang, Z.X., Shen, H.S.: Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments. Nonlinear Dyn. 70, 735–754 (2012)

    Article  MathSciNet  Google Scholar 

  17. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part I. Axially-loaded shells. Compos. Struct. 93, 2096–2108 (2011)

    Google Scholar 

  18. Shen, H.S.: Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments. Part II. Press-loaded shells. Compos. Struct. 93, 2496–2503 (2011)

    Google Scholar 

  19. Wu, Z., Zhang, Y., Yao, G.: Nonlinear forced vibration of functionally graded carbon nanotube reinforced composite circular cylindrical shells. Acta Mech. 231, 2497–2519 (2020)

    Article  MathSciNet  Google Scholar 

  20. Thomas, B., Roy, T.: Vibration analysis of functionally graded carbon nanotubes reinforced composite shell structures. Acta Mech. 227, 581–599 (2016)

    Article  MathSciNet  Google Scholar 

  21. Zghal, S., Frikha, A., Dammak, F.: Large deflection responses-based geometrical nonlinearity of nanocomposite structures reinforced with carbon nanotubes. Appl. Math. Mech. 41, 1227–1250 (2020)

    Article  MathSciNet  Google Scholar 

  22. Quoc, T.H., Tham, V.V., Tu, T.M.: Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech. 232, 1005–1023 (2021)

    MathSciNet  MATH  Google Scholar 

  23. Sofiyev, A.H.: The non-linear vibration of FGM truncated conical shells. Compos. Struct. 94, 2237–2245 (2012)

    Article  Google Scholar 

  24. Moghaddam, S., Ahmadi, H.: Active vibration control of truncated conical shell under harmonic excitation using piezoelectric actuator. Thin Walled Struct. 151, 106642 (2020)

    Article  Google Scholar 

  25. Avey, M., Sofiyev, A.H., Kuruoglu, N.: Influences of elastic foundations and thermal environments on the thermoelastic buckling of nanocomposite truncated conical shells. Acta Mech. 233, 685–700 (2022)

    Article  MathSciNet  Google Scholar 

  26. Chan, D.Q., Nguyen, P.D., Quang, V.D., Anh, V.: Nonlinear buckling and post-buckling of functionally graded CNTs reinforced composite truncated conical shells subjected to axial load. Steel Compos. Struct. 31, 243–259 (2019)

    Google Scholar 

  27. Chan, D.Q., Long, V.D., Duc, N.D.: Nonlinear buckling and postbuckling of FGM shear-deformable truncated conical shells reinforced by FGM stiffeners. Mech. Compos. Mater. 54, 745–764 (2019)

    Article  Google Scholar 

  28. Mirzaei, M., Kiani, Y.: Thermal buckling of temperature dependent FG-CNT reinforced composite plates. Meccanica 51, 2185–2201 (2016)

    Article  MathSciNet  Google Scholar 

  29. Ansari, R., Hasrati, E., Torabi, J.: Nonlinear vibration response of higher-order shear deformable FG-CNTRC conical shells. Compos. Struct. 222, 110906 (2019)

    Article  Google Scholar 

  30. Loy, C.T., Lam, K.Y., Reddy, J.N.: Vibration of functionally graded cylindrical shells. Int. J. Mech. Sci. 41, 309–324 (1999)

    Article  Google Scholar 

  31. Liu, Y., Qin, Z.Y., Chu, F.L.: Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads. Int. J. Mech. Sci. 201, 106474 (2021)

    Article  Google Scholar 

  32. Liew, K.M., Ng, T.Y., Zhao, X.: Free vibration analysis of conical shells via the element-free kp-Ritz method. J. Sound Vib. 281, 627–645 (2005)

    Article  Google Scholar 

  33. Kerboua, Y., Lakis, A.A., Hmila, M.: Vibration analysis of truncated conical shells subjected to flowing fluid. Appl. Math. Model. 34, 791–809 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the National Natural Science Foundation of China (Grant No. 51965042) for supporting this research.

Funding

National Natural Science Foundation of China, 51965042, Wenguang Liu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenguang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Some coefficients can be given, such as A1, A2, B1, B2, C1, D1, D2, E1, F1, F2.

$$\begin{gathered} \overline{A} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {\left( \begin{gathered} a_{1} M^{2} + 3a_{2} M^{2} - 2a_{1} N^{2} - \hfill \\ 5a_{3} M^{2} - 2a_{2} N^{2} - 3a_{4} M^{2} + a_{1} N^{4} \hfill \\ + a_{3} M^{4} - c_{1} N^{2} + a_{2} M^{2} N^{2} \hfill \\ + a_{4} M^{2} N^{2} + c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( \begin{gathered} - 4a_{3} M^{3} + a_{2} M^{3} - a_{4} M^{3} \hfill \\ - 2a_{1} M - 2a_{2} M + \hfill \\ 2a_{3} M + 2a_{4} M - 3a_{2} MN^{2} \hfill \\ + a_{4} MN^{2} + 2c_{1} MN^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ { - \left( \begin{gathered} - 4a_{3} M^{3} + a_{2} M^{3} - a_{4} M^{3} \hfill \\ - 2a_{1} M - 2a_{2} M + \hfill \\ 2a_{3} M + 2a_{4} M - 3a_{2} MN^{2} \hfill \\ + a_{4} MN^{2} + 2c_{1} MN^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( \begin{gathered} a_{1} M^{2} + 3a_{2} M^{2} - 2a_{1} N^{2} \hfill \\ - 5a_{3} M^{2} - 2a_{2} N^{2} - 3a_{4} M^{2} + a_{1} N^{4} \hfill \\ + a_{3} M^{4} - c_{1} N^{2} + a_{2} M^{2} N^{2} \hfill \\ + a_{4} M^{2} N^{2} + c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ \end{array} } \\ \end{array} } \right]^{ - 1}, \hfill \\ \left( {\begin{array}{*{20}c} {\overline{A}_{1} } \\ {\overline{A}_{2} } \\ \end{array} } \right){ = }\overline{A}\left[ {\begin{array}{*{20}c} { - \frac{{M^{2} \cos \left( \alpha \right)}}{{s_{1}^{3} \sin \left( \alpha \right)}}} \\ {\frac{M\cos \left( \alpha \right)}{{s_{1}^{3} \sin \left( \alpha \right)}}}, \\ \end{array} } \right] \hfill \\ \end{gathered}$$
$$\begin{gathered} \overline{B} = \left[ {\begin{array}{*{20}c} {\left( \begin{gathered} a_{1} + a_{1} M^{2} - 2a_{1} N^{2} + a_{3} M^{2} \hfill \\ + a_{1} N^{4} + a_{3} M^{4} + a_{2} M^{2} N^{2} \hfill \\ + a_{4} M^{2} N^{2} + c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( \begin{gathered} a_{4} MN^{2} - a_{2} MN^{2} \hfill \\ + a_{2} M^{3} - a_{4} M^{3} \hfill \\ + a_{2} M - a_{4} M \hfill \\ \end{gathered} \right)} \\ { - \left( \begin{gathered} a_{4} MN^{2} - a_{2} MN^{2} \hfill \\ + a_{2} M^{3} - a_{4} M^{3} \hfill \\ + a_{2} M - a_{4} M \hfill \\ \end{gathered} \right)} & {\left( \begin{gathered} a_{1} + a_{1} M^{2} - 2a_{1} N^{2} + a_{3} M^{2} \hfill \\ + a_{1} N^{4} + a_{3} M^{4} + a_{2} M^{2} N^{2} \hfill \\ + a_{4} M^{2} N^{2} + c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ \end{array} } \right]^{ - 1}, \hfill \\ \left( {\begin{array}{*{20}c} {\overline{B}_{1} } \\ {\overline{B}_{2} } \\ \end{array} } \right) = \overline{B}\left[ {\begin{array}{*{20}c} {\left( \begin{gathered} b_{2} + b_{2} M^{2} + b_{3} M^{2} - 2b_{2} N^{2} \hfill \\ + b_{3} M^{4} + b_{2} N^{4} + b_{1} M^{2} N^{2} \hfill \\ + b_{4} M^{2} N^{2} - c_{2} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ {\left( \begin{gathered} b_{1} M_{3} - b_{4} M^{3} \hfill \\ + b_{1} M - b_{4} M \hfill \\ - b_{1} MN^{2} + b_{4} MN^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} }, \\ \end{array} } \right] \hfill \\ \end{gathered}$$
$$\overline{C}_{1} = \left( {M^{2} \left( {N^{2} - 1} \right)/\left( {4s_{1}^{4} } \right)} \right)/\left( {\left( { - 2a_{1} - 2a_{2} + 2a_{3} + 2a_{4} } \right)/s_{1}^{4} }, \right)$$
$$\begin{gathered} \overline{D} = \left[ {\begin{array}{*{20}c} {\left( {4M^{2} \left( \begin{gathered} 4a_{3} M^{2} + a_{1} + \hfill \\ 3a_{2} - 5a_{3} - 3a_{4} \hfill \\ \end{gathered} \right)} \right)/s_{1}^{4} } & {\left( \begin{gathered} - 4a_{1} M - 4a_{2} M + 4a_{3} M \hfill \\ + 4a_{4} M + 8a_{2} M^{3} \hfill \\ - 32a_{3} M^{3} - 8a_{4} M^{3} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ { - \left( \begin{gathered} - 4a_{1} M - 4a_{2} M + 4a_{3} M \hfill \\ + 4a_{4} M + 8a_{2} M^{3} \hfill \\ - 32a_{3} M^{3} - 8a_{4} M^{3} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( {4M^{2} \left( \begin{gathered} 4a_{3} M^{2} + a_{1} + \hfill \\ 3a_{2} - 5a_{3} - 3a_{4} \hfill \\ \end{gathered} \right)} \right)/s_{1}^{4} } \\ \end{array} } \right]^{ - 1}, \hfill \\ \left( {\begin{array}{*{20}c} {\overline{D}_{1} } \\ {\overline{D}_{2} } \\ \end{array} } \right) = \overline{D}\left[ {\begin{array}{*{20}c} {M\left( {1 - M^{2} - N^{2} } \right)/\left( {4s_{1}^{4} } \right)} \\ {3M^{2} \left( {1 - N^{2} } \right)/\left( {4s_{1}^{4} } \right)} ,\\ \end{array} } \right] \hfill \\ \end{gathered}$$
$$\overline{E}_{1} = \left( {M^{2} \left( {N^{2} - 1} \right)/\left( {4s_{1}^{4} } \right)} \right)/\left( {\left( {4N^{2} \left( {4a_{1} N^{2} - 2a_{1} - 2a_{2} - c_{1} } \right)} \right)/s_{1}^{4} }, \right)$$
$$\begin{gathered} \overline{F} = \left[ {\begin{array}{*{20}c} {\left( \begin{gathered} 4a_{1} M^{2} + 12a_{2} M^{2} - 8a_{1} N^{2} \hfill \\ - 20a_{3} M^{2} - 8a_{2} N^{2} - 12a_{4} M^{2} \hfill \\ + 16a_{1} N^{4} + 16a_{3} M^{4} - 4c_{1} N^{2} \hfill \\ + 16a_{2} M^{2} N^{2} + 16a_{4} M^{2} N^{2} + 16c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( \begin{gathered} - 4a_{1} M - 4a_{2} M + 4a_{3} M \hfill \\ + 4a_{4} M + 8a_{2} M^{2} - 32a_{3} M^{2} \hfill \\ - 24a_{2} N^{2} - 8a_{4} M^{2} - 8a_{4} N^{2} - 16c_{1} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ { - \left( \begin{gathered} - 4a_{1} M - 4a_{2} M + 4a_{3} M \hfill \\ + 4a_{4} M + 8a_{2} M^{2} - 32a_{3} M^{2} \hfill \\ - 24a_{2} N^{2} - 8a_{4} M^{2} - 8a_{4} N^{2} - 16c_{1} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } & {\left( \begin{gathered} 4a_{1} M^{2} + 12a_{2} M^{2} - 8a_{1} N^{2} \hfill \\ - 20a_{3} M^{2} - 8a_{2} N^{2} - 12a_{4} M^{2} \hfill \\ + 16a_{1} N^{4} + 16a_{3} M^{4} - 4c_{1} N^{2} \hfill \\ + 16a_{2} M^{2} N^{2} + 16a_{4} M^{2} N^{2} + 16c_{1} M^{2} N^{2} \hfill \\ \end{gathered} \right)/s_{1}^{4} } \\ \end{array} } \right]^{ - 1}, \hfill \\ \left( {\begin{array}{*{20}c} {\overline{F}_{1} } \\ {\overline{F}_{2} } \\ \end{array} } \right) = \overline{F}\left[ {\begin{array}{*{20}c} {M\left( {M^{2} + N^{2} - 1} \right)/\left( {4s_{1}^{2} } \right)} \\ {M^{2} \left( {N^{2} - 1} \right)/\left( {4s_{1}^{2} } \right)}. \\ \end{array} } \right] \hfill \\ \end{gathered}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, W. Nonlinear vibration response of a functionally graded carbon nanotube-reinforced composite conical shell using a stress function method. Acta Mech 233, 3157–3174 (2022). https://doi.org/10.1007/s00707-022-03273-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03273-9

Navigation