Skip to main content
Log in

Numerical predictions for the effective properties of flexoelectric composites with spherical inclusion

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The direct flexoelectricity in dielectrics, as an electromechanical mechanism coupling electric field and strain gradient, exhibits strong size dependence and structures associated. In the present paper, the effective properties of particulate flexoelectric composites are predicted by the flexoelectric theory. Numerical finite element simulations are realized for representative volume elements (RVE) of the isotropic matrix filled with a spherical flexoelectric inclusion by using mixed variational principle and finite element method (FEM). The elastic fields inside the RVE of different inclusion sizes and volume fractions are studied. The influences of flexoelectricity on the mechanical properties of the composites are discussed. Effective properties of the composites are estimated based on the obtained numerical results. It is shown that flexoelectricity has a great influence on the bulk modulus of composites with a nanoscale inclusion. Due to its size dependence, the flexoelectricity can be neglected in the model with a micron-scale inclusion. At the same time, the selection of length scale will affect the changing trend of effective material properties with volume fraction. Our results suggest that the influence of flexoelectricity on the properties of nanoscale dielectric composites should be emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chu, L., Dui, G., Mei, H., Liu, L., Li, Y.: An analysis of flexoelectric coupling associated electroelastic fields in functionally graded semiconductor nanobeams. J. Appl. Phys. 130, 115701 (2021)

    Article  Google Scholar 

  2. Yudin, P., Tagantsev, A.: Fundamentals of flexoelectricity in solids. Nanotechnology 24, 432001 (2013)

    Article  Google Scholar 

  3. Deng, F., Deng, Q., Yu, W., Shen, S.: Mixed finite elements for flexoelectric solids. J. Appl. Mech.-T. ASME 84, 081004 (2017)

    Article  Google Scholar 

  4. Mao, S., Purohit, P.K., Aravas, N.: Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc. R. Soc. A Math. Phys. 472, 20150879 (2016)

    MathSciNet  MATH  Google Scholar 

  5. Sharma, S., Vaish, R., Kumar, R.: An isogeometric analysis-based investigation of the flexocaloric effect in functionally graded dielectrics. Acta Mech. 232, 4261–4271 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  6. Qu, Y.L., Jin, F., Yang, J.S.: Stress-induced electric potential barriers in thickness-stretch deformations of a piezoelectric semiconductor plate. Acta Mech. 232, 4533–4543 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  7. Qu, Y.L., Jin, F., Yang, J.S.: Buckling of flexoelectric semiconductor beams. Acta Mech. 232, 2623–2633 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deng, Q., Liu, L., Sharma, P.: Flexoelectricity in soft materials and biological membranes. J. Mech. Phys. Solids 62, 209–227 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Petrov, A.G.: Flexoelectricity of model and living membranes. Biochim. Biophys. Acta Biomembr. 1561, 1–25 (2002)

    Article  Google Scholar 

  10. Krichen, S., Sharma, P.: Flexoelectricity: a perspective on an unusual electromechanical coupling. J. Appl. Mech. 83, 030801 (2016)

    Article  Google Scholar 

  11. Sharma, N., Landis, C., Sharma, P.: Piezoelectric thin-film superlattices without using piezoelectric materials. J. Appl. Phys. 108, 024304 (2010)

    Article  Google Scholar 

  12. Mashkevich, V., Tolpygo, K.: Electrical, optical and elastic properties of diamond type crystals. Sov. Phys. JETP 5, 435–439 (1957)

    Google Scholar 

  13. Scott, J.F.: Lattice perturbations in CaWO4 and CaMoO4. J. Chem. Phys. 48, 874–876 (1968)

    Article  Google Scholar 

  14. Maranganti, R., Sharma, N., Sharma, P.: Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys. Rev. B 74, 014110 (2006)

    Article  Google Scholar 

  15. Sharma, N., Maranganti, R., Sharma, P.: On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J. Mech. Phys. Solids 55, 2328–2350 (2007)

    Article  MATH  Google Scholar 

  16. Majdoub, M.S., Sharma, P., Cagin, T.: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008)

    Article  Google Scholar 

  17. Hu, S., Shen, S.: Variational principles and governing equations in nano-dielectrics with the flexoelectric effect. Sci. China Phys. Mech. Astron. 53, 1497–1504 (2010)

    Article  Google Scholar 

  18. Shen, S., Hu, S.: A theory of flexoelectricity with surface effect for elastic dielectrics. J. Mech. Phys. Solids 58, 665–677 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milton, G.W.: The Theory of Composites. Cambridge University Press, Oxford (2004)

    Google Scholar 

  20. Koizumi, M.: The concept of FGM. Ceram. Trans. 34, 3–10 (1993)

    Google Scholar 

  21. Miyamoto, Y., Kaysser, W., Rabin, B., Kawasaki, A., Ford, R.: Functionally Graded Materials: Design, Processing and Applications. Kluwer Academic Publication, Hague (1999)

    Book  Google Scholar 

  22. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structures. Appl. Mech. Rev. 60, 195–216 (2007)

    Article  Google Scholar 

  23. Xin, L., Dui, G., Yang, S., Zhang, J.: An elasticity solution for functionally graded thick-walled tube subjected to internal pressure. Int. J. Mech. Sci. 89, 344–349 (2014)

    Article  Google Scholar 

  24. Chu, L., Li, Y., Dui, G.: Size-dependent electromechanical coupling in functionally graded flexoelectric nanocylinders. Acta Mech. 230, 3071–3086 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Chu, L., Dui, G.: Exact solutions for functionally graded micro-cylinders in first gradient elasticity. Int. J. Mech. Sci. 148, 366–373 (2018)

    Article  Google Scholar 

  26. Raju, B., Hiremath, S.R., Mahapatra, D.R.: A review of micromechanics based models for effective elastic properties of reinforced polymer matrix composites. Compos. Struct. 204, 607–619 (2018)

    Article  Google Scholar 

  27. Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2018)

    Article  Google Scholar 

  28. Hill, R.: A self-consistent mechanics of composite materials. J. Mech. Phys. Solids 13, 213–222 (1965)

    Article  Google Scholar 

  29. Kerner, E.: The elastic and thermo-elastic properties of composite media. Proc. Phys. Soc. Lond. Sect. B 69, 808 (1956)

    Article  Google Scholar 

  30. Solyaev, Y., Lurie, S., Korolenko, V.: Three-phase model of particulate composites in second gradient elasticity. Eur. J. Mech. A Solids 78, 103853 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ke, L., Yang, J., Kitipornchai, S., Wang, Y.: Axisymmetric postbuckling analysis of size-dependent functionally graded annular microplates using the physical neutral plane. Int. J. Eng. Sci. 81, 66–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Xin, L., Yang, S., Zhou, D., Dui, G.: An approximate analytical solution based on the Mori-Tanaka method for functionally graded thick-walled tube subjected to internal pressure. Compos. Struct. 135, 74–82 (2016)

    Article  Google Scholar 

  33. Kundalwal, S.I., Choyal, V.K., Choyal, V.: Flexoelectric effect in boron nitride-graphene heterostructures. Acta Mech. 232, 3781–3800 (2021)

    Article  MATH  Google Scholar 

  34. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon 117, 462–472 (2017)

    Article  Google Scholar 

  35. Chen, W., Zheng, Y., Feng, X., Wang, B.: Utilizing mechanical loads and flexoelectricity to induce and control complicated evolution of domain patterns in ferroelectric nanofilms. J. Mech. Phys. Solids 79, 108–133 (2015)

    Article  MATH  Google Scholar 

  36. Abdollahi, A., Peco, C., Millan, D., Arroyo, M., Arias, I.: Computational evaluation of the flexoelectric effect in dielectric solids. J. Appl. Phys. 116, 093502 (2014)

    Article  Google Scholar 

  37. Yvonnet, J., Liu, L.: A numerical framework for modeling flexoelectricity and Maxwell stress in soft dielectrics at finite strains. Comput. Method. Appl. M. 313, 450–482 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zheng, Y., Chu, L., Dui, G., Zhu, X.: Modeling and simulation of functionally graded flexoelectric micro-cylinders based on the mixed finite element method. Appl. Phys. A 127, 228 (2021)

    Article  Google Scholar 

  39. Zheng, Y., Chu, L., Dui, G., Zhu, X.: Numerical predictions for the effective electrical properties of flexoelectric composites with a single inclusion. Appl. Phys. A 127, 686 (2021)

    Article  Google Scholar 

  40. Aravas, N.: Plane-strain problems for a class of gradient elasticity models—a stress function approach. J. Elasticity 104, 45–70 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Thorpe, M., Jasiuk, I.: New results in the theory of elasticity for two-dimensional composites. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 438, 531–544 (1992)

    MATH  Google Scholar 

  42. Ostoja-Starzewski, M.: Microstructural Randomness and Scaling in Mechanics of Materials. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  43. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014)

    Article  Google Scholar 

  44. Chu, B., Salem, D.R.: Flexoelectricity in several thermoplastic and thermosetting polymers. Appl. Phys. Lett. 101, 2069 (2012)

    Article  Google Scholar 

  45. Liang, X., Hu, S., Shen, S.: Size-dependent buckling and vibration behaviors of piezoelectric nanostructures due to flexoelectricity. Smart Mater. Struct. 24, 105012 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 11772041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guansuo Dui.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Chu, L., Dui, G. et al. Numerical predictions for the effective properties of flexoelectric composites with spherical inclusion. Acta Mech 233, 2093–2106 (2022). https://doi.org/10.1007/s00707-022-03207-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-022-03207-5

Navigation