Skip to main content

Advertisement

Log in

An isogeometric analysis-based investigation of the flexocaloric effect in functionally graded dielectrics

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The increasing obligatory demand for clean and environment-friendly alternates for refrigeration and air-conditioning has made solid-state refrigeration more alluring for researchers of the relevant fields. The flexocaloric effect is a mechanism providing solid-state refrigeration in mechanically loaded samples. In this work, we explore the potential of functionally graded (FG) dielectric material with Ba0.67Sr0.33TiO3 (BST) and polyvinylidene fluoride (PVDF) as its constituents to impart the cooling effect via the flexocaloric effect. A theoretical analysis based on the phenomenological thermodynamic theory of caloric effects is performed. The entropy and temperature changes (adiabatic) are derived by including flexoelectricity-induced polarization in Maxwell’s relation for the electrocaloric effect. An average temperature change of 1.82 K was achieved under an applied pressure of 100 MPa, which is not possible in conventionally used homogeneous trapezoid samples. The flexocaloric effect is observed to increase sharply with increasing load due to quadratic proportionality of temperature change with strain gradient. Further, the material composition can be tailored for increased entropy and temperature change by omitting the pure BST and PVDF phases at the top and bottom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wada, H., Tanabe, Y.: Giant magnetocaloric effect of MnAs1-xSbx. Appl. Phys. Lett. 79, 3302–3304 (2001). https://doi.org/10.1063/1.1419048

    Article  Google Scholar 

  2. Krenke, T., Duman, E., Acet, M., Wassermann, E.F., Moya, X., Manosa, L., Planes, A.: Inverse magnetocaloric effect in ferromagnetic Ni-Mn-Sn alloys. Nat. Mater. 4, 450–454 (2005). https://doi.org/10.1038/nmat1395

    Article  Google Scholar 

  3. Pecharsky, V.K., Gschneidner, K.A.: Magnetocaloric effect and magnetic refrigeration. J. Magn. Magn. Mater. 200, 44–56 (1999). https://doi.org/10.1016/S0304-8853(99)00397-2

    Article  Google Scholar 

  4. Franco, V., Blázquez, J.S., Ipus, J.J., Law, J.Y., Moreno-Ramírez, L.M., Conde, A.: Magnetocaloric effect: from materials research to refrigeration devices. Prog. Mater. Sci. 93, 112–232 (2018). https://doi.org/10.1016/j.pmatsci.2017.10.005

    Article  Google Scholar 

  5. McMichael, R.D., Shull, R.D., Swartzendruber, L.J., Bennett, L.H., Watson, R.E.: Magnetocaloric effect in superparamagnets. J. Magn. Magn. Mater. 111, 29–33 (1992). https://doi.org/10.1016/0304-8853(92)91049-Y

    Article  Google Scholar 

  6. de Oliveira, N.A., von Ranke, P.J.: Theoretical aspects of the magnetocaloric effect. Phys. Rep. 489, 89–159 (2010). https://doi.org/10.1016/j.physrep.2009.12.006

    Article  Google Scholar 

  7. Pecharsky, V.K., Gschneidner, K.A.: Giant magnetocaloric effect in Gd5 (Si2 Ge2). Phys. Rev. Lett. 78, 4494–4497 (1997). https://doi.org/10.1103/PhysRevLett.78.4494

    Article  Google Scholar 

  8. Valant, M.: Electrocaloric materials for future solid-state refrigeration technologies. Prog. Mater. Sci. 57, 980–1009 (2012). https://doi.org/10.1016/j.pmatsci.2012.02.001

    Article  Google Scholar 

  9. Lu, S.G., Zhang, Q.: Electrocaloric materials for solid-state refrigeration. Adv. Mater. 21, 1983–1987 (2009). https://doi.org/10.1002/adma.200802902

    Article  Google Scholar 

  10. Chauhan, A., Patel, S., Vaish, R.: Multicaloric effect in Pb(Mn1/3Nb2/3)O3–32PbTiO3 single crystals: modes of measurement. Acta Mater. 97, 17–28 (2015). https://doi.org/10.1016/j.actamat.2015.06.027

    Article  Google Scholar 

  11. Chauhan, A., Patel, S., Vaish, R.: Multicaloric effect in Pb(Mn1/3Nb2/3)O3–32PbTiO3 single crystals. Acta Mater. 89, 384–395 (2015). https://doi.org/10.1016/j.actamat.2015.01.070

    Article  Google Scholar 

  12. Mikhaleva, E.A., Gorev, M.V., Molokeev, M.S., Kartashev, A.V., Flerov, I.N.: Anisotropy of piezocaloric effect at ferroelectric phase transitions in ammonium hydrogen sulphate. J. Alloys Compd. 839, 155085 (2020). https://doi.org/10.1016/j.jallcom.2020.155085

    Article  Google Scholar 

  13. Bai, G., Xie, Q., Xu, J., Gao, C.: Large negative piezocaloric effect: uniaxial stress effect. Solid State Commun. 291, 11–14 (2019). https://doi.org/10.1016/j.ssc.2019.01.002

    Article  Google Scholar 

  14. Patel, S., Chauhan, A., Vaish, R.: Elastocaloric and piezocaloric effects in lead zirconate titanate ceramics. Energy Technol. 4, 647–652 (2016). https://doi.org/10.1002/ente.201500446

    Article  Google Scholar 

  15. Lisenkov, S., Mani, B.K., Chang, C.M., Almand, J., Ponomareva, I.: Multicaloric effect in ferroelectric PbTiO3 from first principles. Phys. Rev. B Condens. Matter Mater. Phys. 87, 1–4 (2013). https://doi.org/10.1103/PhysRevB.87.224101

    Article  Google Scholar 

  16. Su, Y.X., Zhou, Z.D., Yang, F.P.: Electromechanical analysis of bilayer piezoelectric sensors due to flexoelectricity and strain gradient elasticity. AIP Adv. 9, 16 (2019). https://doi.org/10.1063/1.5081072

    Article  Google Scholar 

  17. Rao, Z., et al: Diagonal Flexoelectric Sensor on Cylindrical Substructure. pp. 1–4

  18. Yan, X., Huang, W., Kwon, S.R., Yang, S., Jiang, X., Yuan, F.-G.: A sensor for the direct measurement of curvature based on flexoelectricity. Smart Mater. Struct. 22, 85016 (2013)

    Article  Google Scholar 

  19. Merupo, V.I., Guiffard, B., Seveno, R., Tabellout, M., Kassiba, A.: Flexoelectric response in soft polyurethane films and their use for large curvature sensing. J. Appl. Phys. 122, 16 (2017). https://doi.org/10.1063/1.4994760

    Article  Google Scholar 

  20. Arefi, M., Pourjamshidian, M., Ghorbanpour, A.A., Rabczuk, T.: Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nano-beams. J. Low Freq. Noise Vib. Act. Control. 38, 122–142 (2019). https://doi.org/10.1177/1461348418815410

    Article  Google Scholar 

  21. Wu, T., Liu, K., Zhang, S., Ji, H., Xu, M., Shen, S.: An actuation method by a biconcave beam structure with converse flexoelectric effect. Smart Mater. Struct. 28, 119 (2019). https://doi.org/10.1088/1361-665X/ab4727

    Article  Google Scholar 

  22. Zhang, S., Liu, K., Xu, M., Shen, S.: A curved resonant flexoelectric actuator. Appl. Phys. Lett. 111, 5–10 (2017). https://doi.org/10.1063/1.4986370

    Article  Google Scholar 

  23. Fan, M., Tzou, H.: Vibration control with the converse flexoelectric effect on the laminated beams. J. Intell. Mater. Syst. Struct. 30, 2556–2566 (2019). https://doi.org/10.1177/1045389X19844013

    Article  Google Scholar 

  24. Moura, A.G., Erturk, A.: Electroelastodynamics of flexoelectric energy conversion and harvesting in elastic dielectrics. J. Appl. Phys. 121, 96 (2017). https://doi.org/10.1063/1.4976069

    Article  Google Scholar 

  25. Deng, Q., Kammoun, M., Erturk, A., Sharma, P.: Nanoscale flexoelectric energy harvesting. Int. J. Solids Struct. 51, 3218–3225 (2014). https://doi.org/10.1016/j.ijsolstr.2014.05.018

    Article  Google Scholar 

  26. Su, Y., Lin, X., Huang, R., Zhou, Z.: Analytical electromechanical modeling of nanoscale flexoelectric energy harvesting. Appl. Sci. 9, 159 (2019). https://doi.org/10.3390/app9112273

    Article  Google Scholar 

  27. Li, Z., Deng, Q., Shen, S.: Flexoelectric energy harvesting using circular thin membranes. J. Appl. Mech. 87, 1–9 (2020). https://doi.org/10.1115/1.4047131

    Article  Google Scholar 

  28. Dai, H.L., Yan, Z., Wang, L.: Nonlinear analysis of flexoelectric energy harvesters under force excitations. Int. J. Mech. Mater. Des. 16, 19–33 (2020). https://doi.org/10.1007/s10999-019-09446-0

    Article  Google Scholar 

  29. Wang, K.F., Wang, B.L., Zeng, S.: Analysis of an array of flexoelectric layered nanobeams for vibration energy harvesting. Compos. Struct. 187, 48–57 (2018). https://doi.org/10.1016/j.compstruct.2017.12.040

    Article  Google Scholar 

  30. Qi, L.: Energy harvesting properties of the functionally graded flexoelectric microbeam energy harvesters. Energy 171, 721–730 (2019). https://doi.org/10.1016/j.energy.2019.01.047

    Article  Google Scholar 

  31. Patel, S., Chauhan, A., Madhar, N.A., Ilahi, B., Vaish, R.: Flexoelectric induced caloric effect in truncated pyramid shaped Ba0.67Sr0.33TiO3 ferroelectric material. J. Electron. Mater. 46, 4166–4171 (2017). https://doi.org/10.1007/s11664-017-5362-7

    Article  Google Scholar 

  32. Patel, S., Chauhan, A., Cuozzo, J., Lisenkov, S., Ponomareva, I., Vaish, R.: Pyro-paraelectric and flexocaloric effects in barium strontium titanate: a first principles approach. Appl. Phys. Lett. 108, 96 (2016). https://doi.org/10.1063/1.4947010

    Article  Google Scholar 

  33. Patel, S., Chauhan, A., Vaish, R.: Flexo/electro-caloric performance of BaTi0.87Sn0.13O3ceramics. Appl. Phys. Lett. 117, 1–5 (2020). https://doi.org/10.1063/5.0017687

    Article  Google Scholar 

  34. Bai, G., Qin, K., Xie, Q., Yan, X., Gao, C., Liu, Z.: Size dependent flexocaloric effect of paraelectric Ba0.67Sr0.33TiO3 nanostructures. Mater. Lett. 186, 146–150 (2017). https://doi.org/10.1016/j.matlet.2016.10.001

    Article  Google Scholar 

  35. Qiu, Y., Wu, H., Wang, J., Lou, J., Zhang, Z., Liu, A., Kitamura, T., Chai, G.: Giant electrocaloric effect in ferroelectric ultrathin films at room temperature mediated by flexoelectric effect and work function. J. Appl. Phys. 122, 59 (2017). https://doi.org/10.1063/1.4992811

    Article  Google Scholar 

  36. Starkov, A.S., Starkov, I.A.: Flexocaloric effect in thin plates of barium titanate and strontium titanate. Phys. Solid State. 61, 2542–2546 (2019). https://doi.org/10.1134/s1063783419120539

    Article  Google Scholar 

  37. Khassaf, H., Patel, T., Hebert, R.J., Alpay, S.P.: Flexocaloric response of epitaxial ferroelectric films. J. Appl. Phys. 123, 1111 (2018). https://doi.org/10.1063/1.5009121

    Article  Google Scholar 

  38. Kumar, A., Kiran, R., Kumar, R., Chandra Jain, S., Vaish, R.: Flexoelectric effect in functionally graded materials: a numerical study. Eur. Phys. J. Plus. 133, 1–9 (2018). https://doi.org/10.1140/epjp/i2018-11976-1

    Article  Google Scholar 

  39. Sharma, S., Kumar, A., Kumar, R., Talha, M., Vaish, R.: Mechanics of materials geometry independent direct and converse flexoelectric effects in functionally graded dielectrics : an isogeometric analysis. Mech. Mater. 148, 103456 (2020). https://doi.org/10.1016/j.mechmat.2020.103456

    Article  Google Scholar 

  40. Zhang, S., Liu, K., Wen, X., Wu, T., Xu, M., Shen, S.: Converse flexoelectricity with relative permittivity gradient. Appl. Phys. Lett. 114, 93 (2019). https://doi.org/10.1063/1.5053413

    Article  Google Scholar 

  41. Cross, L.E.: Flexoelectric effects: Charge separation in insulating solids subjected to elastic strain gradients. J. Mater. Sci. 41, 53–63 (2006)

    Article  Google Scholar 

  42. Lu, J., Liang, X., Yu, W., Hu, S., Shen, S.: Temperature dependence of flexoelectric coefficient for bulk polymer polyvinylidene fluoride. J. Phys. D. Appl. Phys. 52, 13 (2019). https://doi.org/10.1088/1361-6463/aaf543

    Article  Google Scholar 

  43. Jayalakshmy, M.S., Philip, J.: Enhancement in pyroelectric detection sensitivity for flexible LiNbO3/PVDF nanocomposite films by inclusion content control. J. Polym. Res. 22, 1–11 (2015). https://doi.org/10.1007/s10965-015-0688-4

    Article  Google Scholar 

  44. Petrovic, J.J., McClellan, K.J.: Ceramic/polymer functionally graded material (FGM) lightweight armor system. Los Alamos National Lab., NM (United States) (1998)

  45. Besisa, D.H.A., Ewais, E.M.M.: Advances in functionally graded ceramics—Processing, sintering properties and applications. Adv. Funct. Graded Mater. Struct. 63, 1–32 (2016)

    Google Scholar 

  46. Boughton, P., Ferris, D., Ruys, D.A.J.: A Ceramic‐Polymer Functionally Graded Material: A Novel Disk Prosthesis. In: 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, pp. 593–600. Wiley Online Library (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saurav Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Vaish, R. & Kumar, R. An isogeometric analysis-based investigation of the flexocaloric effect in functionally graded dielectrics. Acta Mech 232, 4261–4271 (2021). https://doi.org/10.1007/s00707-021-03051-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03051-z

Navigation