Skip to main content
Log in

Flexoelectric effect in boron nitride–graphene heterostructures

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Hexagonal boron nitride and graphene layers offer an attractive way to build 2D heterostructures as their lattices are well-matched as well as they are isostructural and isoelectronic. In this work, the flexoelectric coefficients of monolayer boron nitride-graphene heterostructures (BGHs) are determined using molecular dynamics simulations with a Tersoff potential force field. This is achieved by imposing the bending deformation to the pristine BN sheet (BNS) and BGHs. Three shapes of graphene domains are considered: triangular, trapezoidal and circular. Overall polarization of BGHs was enhanced when the graphene domain was surrounded by more N atoms than B atoms. This enhancement is attributed to higher dipole moments due to the C–N interface compared to the C–B interface. The flexoelectric response for BGHs with 5.6% of triangular and trapezoidal graphene domains was enhanced by 15.2% and 7.83%, respectively, and reduced by 25% for the circular graphene domain. We also studied the bending stiffness of pristine BNS and BGHs using the continuum-mechanics approach. Our results also reveal that the bending stiffness of BGHs increases compared to the pristine BNS. Moreover, the enhancement in the flexoelectric coefficient and bending stiffness was more significant when the graphene domain breaks the symmetry of BGHs. Our fundamental study highlights the possibility of using BGHs in nanoelectromechanical systems (NEMS) such as actuators, sensors and resonators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data

Data available on request from the authors.

Abbreviations

E:

Total energy

\(E_{i}\) :

Site energy

\(V_{{ij}}\) :

Bond energy

\(r_{{ij}}\) :

Distance between atoms i and j

\(b_{{ij}}\) :

Bond angle

\(f_{R}\) :

Repulsive potential

\(f_{A}\) :

Attractive pair potentials

\(f_{C}\) :

Cut-off function

R and D:

Model specific parameters

R:

Radius of curvature

K:

Strain gradient/bending curvature

p and q:

Curve fitting parameters

L x :

Length along the direction of x

\(S_{z}\) :

Bending displacement

\(P_{x}\) and \(P_{z}\) :

Polarizations along the x- and z-direction

\({\text{q}}_{{\text{i}}}\) :

Ion charge of the ith atom

\(r_{i}\) :

x-coordinate of the ith atom

N :

Number of atoms

A :

Surface area

\(D\) :

Bending stiffness

ΔE:

Bending potential energy

\(\theta _{{ijk}}\) :

Angle between bonds

\(\theta\) :

Angle between two vectors

\(\varepsilon _{{xz}}\) :

Strain in the x-direction due to deformation in the z-direction

\(e_{{ijk}}\) :

Piezoelectric coefficients

\(\mu _{{ijkl}}\) :

Flexoelectric coefficients

BN:

Boron nitride

BNS:

Boron nitride nanosheet

BGH:

Boron nitride-graphene heterostructure

BCN:

Carbon-doped boron nitride nanosheet

MD:

Molecular dynamics

DFT:

Density functional theory

CVD:

Chemical vapor deposition

EBR:

Electron beam irradiation

References

  1. Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano 4, 2979 (2010)

    Article  Google Scholar 

  2. Michel, K.H., Verberck, B.: Theory of elastic and piezoelectric effects in two-dimensional hexagonal boron nitride. Phys. Rev. B Condens. Matter Mater. Phys. 80, 224301 (2009)

    Article  Google Scholar 

  3. Albe, K., Möller, W., Heinig, K.H.: Computer simulation and boron nitride. Radiat. Eff. Defects Solids. 141, 85 (1997)

    Article  Google Scholar 

  4. Paciĺ, D., Meyer, J.C., Girit, Ç., Zettl, A.: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008)

    Article  Google Scholar 

  5. Shah, P.H., Batra, R.C.: Elastic moduli of covalently functionalized single layer graphene sheets. Comput. Mater. Sci. 95, 637–650 (2014)

    Article  Google Scholar 

  6. Terrones, M., Grobert, N., Terrones, H.: Synthetic routes to nanoscale BxCyNz architectures. Carbon N. Y. 40, 1665–1684 (2002)

    Article  Google Scholar 

  7. Li, C., Bando, Y., Zhi, C., Huang, Y., Golberg, D.: Thickness-dependent bending modulus of hexagonal boron nitride nanosheets. Nanotechnology 20, 385707 (2009)

    Article  Google Scholar 

  8. Noor-A-Alam, M., Kim, H.J., Shin, Y.H.: Dipolar polarization and piezoelectricity of a hexagonal boron nitride sheet decorated with hydrogen and fluorine. Phys. Chem. Chem. Phys. 16, 6575–6582 (2014)

    Article  Google Scholar 

  9. Naumov, I., Bratkovsky, A.M., Ranjan, V.: Unusual flexoelectric effect in two-dimensional noncentrosymmetric sp2-bonded crystals. Phys. Rev. Lett. 102, 217601 (2009)

    Article  Google Scholar 

  10. Wang, J., Li, J.J., Weng, G.J., Su, Y.: The effects of temperature and alignment state of nanofillers on the thermal conductivity of both metal and nonmetal based graphene nanocomposites. Acta Mater. 185, 461–473 (2020)

    Article  Google Scholar 

  11. Su, Y., Li, J.J., Weng, G.J.: Theory of thermal conductivity of graphene-polymer nanocomposites with interfacial Kapitza resistance and graphene-graphene contact resistance. Carbon N. Y. 137, 222–233 (2018)

    Article  Google Scholar 

  12. Han, W.Q., Wu, L., Zhu, Y., Watanabe, K., Taniguchi, T.: Structure of chemically derived mono- and few-atomic-layer boron nitride sheets. Appl. Phys. Lett. 93, 223103 (2008)

    Article  Google Scholar 

  13. Jin, C., Lin, F., Suenaga, K., Iijima, S.: Fabrication of a freestanding boron nitride single layer and Its defect assignments. Phys. Rev. Lett. 102, 195505 (2009)

    Article  Google Scholar 

  14. Shi, Y., Hamsen, C., Jia, X., Kim, K.K., Reina, A., Hofmann, M., Hsu, A.L., Zhang, K., Li, H., Juang, Z.Y., Dresselhaus, M.S., Li, L.J., Kong, J.: Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett. 10, 4134–4139 (2010)

    Article  Google Scholar 

  15. Lin, Y., Connell, J.W.: Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4, 6908 (2012)

    Article  Google Scholar 

  16. Lin, Y., Williams, T.V., Cao, W., Elsayed-Ali, H.E., Connell, J.W.: Defect functionalization of hexagonal boron nitride nanosheets. J. Phys. Chem. C. 114, 17434–17439 (2010)

    Article  Google Scholar 

  17. Weng, Q., Wang, X., Wang, X., Bando, Y., Golberg, D.: Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45, 3989 (2016)

    Article  Google Scholar 

  18. Lehtinen, O., Dumur, E., Kotakoski, J., Krasheninnikov, A.V., Nordlund, K., Keinonen, J.: Production of defects in hexagonal boron nitride monolayer under ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 269, 1327–1331 (2011)

    Article  Google Scholar 

  19. Guo, N., Wei, J., Jia, Y., Sun, H., Wang, Y., Zhao, K., Shi, X., Zhang, L., Li, X., Cao, A., Zhu, H., Wang, K., Wu, D.: Fabrication of large area hexagonal boron nitride thin films for bendable capacitors. Nano Res. 6, 602–610 (2013)

    Article  Google Scholar 

  20. Wu, W., Wang, L., Li, Y., Zhang, F., Lin, L., Niu, S., Chenet, D., Zhang, X., Hao, Y., Heinz, T.F., Hone, J., Wang, Z.L.: Piezoelectricity of single-atomic-layer MoS 2 for energy conversion and piezotronics. Nature 514, 470–474 (2014)

    Article  Google Scholar 

  21. Brennan, C.J., Ghosh, R., Koul, K., Banerjee, S.K., Lu, N., Yu, E.T.: Out-of-Plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano Lett. 17, 5464 (2017)

    Article  Google Scholar 

  22. Bernardini, F., Fiorentini, V., Vanderbilt, D.: Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B Condens. Matter Mater. Phys. 56, R10024–R10027 (1997)

    Article  Google Scholar 

  23. Ahmadpoor, F., Sharma, P.: Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7, 16555 (2015)

    Article  Google Scholar 

  24. Mele, E.J., Král, P.: Electric polarization of heteropolar nanotubes as a geometric phase. Phys. Rev. Lett. 88, 568031–568034 (2002)

    Article  Google Scholar 

  25. Sai, N., Mele, E.J.: Microscopic theory for nanotube piezoelectricity. Phys. Rev. B - Condens. Matter Mater. Phys. 68, 241405 (2003)

    Article  Google Scholar 

  26. López-Suárez, M., Pruneda, M., Abadal, G., Rurali, R.: Piezoelectric monolayers as nonlinear energy harvesters. Nanotechnology 25, 175401 (2014)

    Article  Google Scholar 

  27. Dumitricǎ, T., Landis, C.M., Yakobson, B.I.: Curvature-induced polarization in carbon nanoshells. Chem. Phys. Lett. 360, 182–188 (2002)

    Article  Google Scholar 

  28. Kalinin, S.V., Meunier, V.: Electronic flexoelectricity in low-dimensional systems. Phys. Rev. B Condens. Matter Mater. Phys. 77, 00340 (2008)

    Article  Google Scholar 

  29. Duerloo, K.A.N., Reed, E.J.: Flexural electromechanical coupling: A nanoscale emergent property of boron nitride bilayers. Nano Lett. 13, 1681–1686 (2013)

    Article  Google Scholar 

  30. Kvashnin, A.G., Sorokin, P.B., Yakobson, B.I.: Flexoelectricity in carbon nanostructures: Nanotubes, fullerenes, and nanocones. J. Phys. Chem. Lett. 6, 2740–2744 (2015)

    Article  Google Scholar 

  31. Chatzopoulos, A., Beck, P., Roth, J., Trebin, H.R.: Atomistic modeling of flexoelectricity in periclase. Phys. Rev. B. 93, 024105 (2016)

    Article  Google Scholar 

  32. Kundalwal, S.I., Meguid, S.A., Weng, G.J.: Strain gradient polarization in graphene. Carbon N. Y. 117, 462–472 (2017)

    Article  Google Scholar 

  33. Zhuang, X., He, B., Javvaji, B., Park, H.S.: Intrinsic bending flexoelectric constants in two-dimensional materials. Phys. Rev. B. 99, 054105 (2019)

    Article  Google Scholar 

  34. Barani, E., Korznikova, E.A., Chetverikov, A.P., Zhou, K., Dmitriev, S.V.: Gap discrete breathers in strained boron nitride. Phys. Lett. Sect. A Gen. At. Solid State Phys. 381, 3553–3557 (2017)

    Google Scholar 

  35. Baimova, J.A.: Property control by elastic strain engineering: Application to graphene. J. Micromech. Mol. Phys. 02, 1750001 (2017)

    Article  Google Scholar 

  36. Kundalwal, S.I., Choyal, V.: Enhancing the piezoelectric properties of boron nitride nanotubes through defect engineering. Phys. E Low-dimens. Syst. Nanostruct. 125, 114304 (2021)

    Article  Google Scholar 

  37. Evazzade, I., Lobzenko, I., Golubev, O., Korznikova, E.: Two-phase tension of a carbon nanotube. J. Micromech. Mol. Phys. 05, 2050001 (2020)

    Article  Google Scholar 

  38. Wang, Z.: Alignment of graphene nanoribbons by an electric field. Carbon N. Y. 47, 3050 (2009)

    Article  Google Scholar 

  39. Scarpa, F., Adhikari, S., Gil, A.J., Remillat, C.: The bending of single layer graphene sheets: the lattice versus continuum approach. Nanotechnology 21, 125702 (2010)

    Article  Google Scholar 

  40. Ma, T., Li, B., Chang, T.: Chirality- and curvature-dependent bending stiffness of single layer graphene. Appl. Phys. Lett. 99, 201901 (2011)

    Article  Google Scholar 

  41. Thomas, S., Ajith, K.M., Valsakumar, M.C.: Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride. J. Phys. Condens. Matter. 28, 295302 (2016)

    Article  Google Scholar 

  42. González, R.I., Valencia, F.J., Rogan, J., Valdivia, J.A., Sofo, J., Kiwi, M., Munoz, F.: Bending energy of 2D materials: Graphene, MoS2 and imogolite. RSC Adv. 8, 4577 (2018)

    Article  Google Scholar 

  43. Wang, S., Chen, Q., Wang, J.: Optical properties of boron nitride nanoribbons: Excitonic effects. Appl. Phys. Lett. 99, 063114 (2011)

    Article  Google Scholar 

  44. Zhang, J.: Piezoelectrically tunable resonance properties of boron nitride nanotube based resonators. J. Appl. Phys. 124, 055103 (2018)

    Article  Google Scholar 

  45. Kundalwal, S.I., Choyal, V.K., Choyal, V., Nevhal, S.K., Luhadiya, N.: Enhancement of piezoelectric and flexoelectric response of boron nitride sheet superlattices via interface and defect engineering. Phys. E Low-dimens. Syst. Nanostruct. 127, 114563 (2021)

    Article  Google Scholar 

  46. Zhao, C., Xu, Z., Wang, H., Wei, J., Wang, W., Bai, X., Wang, E.: Carbon-doped boron nitride nanosheets with ferromagnetism above room temperature. Adv. Funct. Mater. 15, 5985–5992 (2014)

    Article  Google Scholar 

  47. Eshkalak, K.E., Sadeghzadeh, S., Jalaly, M.: Mechanical properties of defective hybrid graphene-boron nitride nanosheets: a molecular dynamics study. Comput. Mater. Sci. 149, 170–181 (2018)

    Article  Google Scholar 

  48. Bhattacharya, A., Bhattacharya, S., Das, G.P.: Band gap engineering by functionalization of BN sheet. Phys. Rev. B - Condens. Matter Mater. Phys. 85, 035415 (2012)

    Article  Google Scholar 

  49. Gao, M., Adachi, M., Lyalin, A., Taketsugu, T.: Long range functionalization of h-BN monolayer by carbon doping. J. Phys. Chem. 120, 1599C (2016)

    Google Scholar 

  50. Zhang, Y.Y., Pei, Q.X., Liu, H.Y., Wei, N.: Thermal conductivity of a h-BCN monolayer. Phys. Chem. Chem. Phys. 19, 27326–27331 (2017)

    Article  Google Scholar 

  51. Beniwal, S., Hooper, J., Miller, D.P., Costa, P.S., Chen, G., Liu, S.Y., Dowben, P.A., Sykes, E.C.H., Zurek, E., Enders, A.: Graphene-like Boron–Carbon–Nitrogen Monolayers. ACS Nano 11, 2486–2493 (2017)

    Article  Google Scholar 

  52. Thomas, S., Lee, S.U.: Atomistic insights into the anisotropic mechanical properties and role of ripples on the thermal expansion of h-BCN monolayers. RSC Adv. 9, 1238–1246 (2019)

    Article  Google Scholar 

  53. Xia, X., Weng, G.J., Zhang, J., Li, Y.: The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mech. 231, 1305–1320 (2020)

    Article  MathSciNet  Google Scholar 

  54. Xia, X., Du, Z., Zhang, J., Li, J., Weng, G.J.: A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. Int. J. Eng. Sci. 162, 103476 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  55. Kundalwal, S.I.: Review on micromechanics of nano- and micro-fiber reinforced composites. Polym. Compos. 39, 4243–4274 (2018)

    Article  Google Scholar 

  56. Yan, H., Tang, Y., Su, J., Yang, X.: Enhanced thermal-mechanical properties of polymer composites with hybrid boron nitride nanofillers. Appl. Phys. A Mater. Sci. Process. 114, 331–337 (2014)

    Article  Google Scholar 

  57. Sutter, P., Cortes, R., Lahiri, J., Sutter, E.: Interface formation in monolayer graphene-boron nitride heterostructures. Nano Lett. 12, 4869–4874 (2012)

    Article  Google Scholar 

  58. Plimton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  59. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

  60. Tersoff, J.: Modeling solid-state chemistry: Interatomic potentials for multicomponent systems. Phys. Rev. B. 39, 5566–5568 (1989)

    Article  Google Scholar 

  61. Abadi, R., Uma, R.P., Izadifar, M., Rabczuk, T.: Investigation of crack propagation and existing notch on the mechanical response of polycrystalline hexagonal boron-nitride nanosheets. Comput. Mater. Sci. 131, 86 (2017)

    Article  Google Scholar 

  62. Matsunaga, K., Fisher, C., Matsubara, H.: Tersoff potential parameters for simulating cubic boron carbonitrides. Jpn J. Appl. Phys. Part 2 Lett. 39, 48–51 (2000)

    Article  Google Scholar 

  63. KInacI, A., Haskins, J.B., Sevik, C., ÇaǧIn, T.: Thermal conductivity of nanostructures. Phys. Rev. 86, 115410 (2012)

    Article  Google Scholar 

  64. Han, T., Luo, Y., Wang, C.: Effects of temperature and strain rate on the mechanical properties of hexagonal boron nitride nanosheets. J. Phys. D. Appl. Phys. 47, 025303 (2014)

    Article  Google Scholar 

  65. Amalia, W., Nurwantoro, P., Sholihun: Sholihun: density-functional-theory calculations of structural and electronic properties of vacancies in monolayer hexagonal boron nitride (h-BN). Comput. Condens. Matter. 18, e00354 (2019)

    Article  Google Scholar 

  66. Kundalwal, S.I., Choyal, V.K., Luhadiya, N., Choyal, V.: Effect of carbon doping on electromechanical response of boron nitride nanosheets. Nanotechnology 31, 405710 (2020)

    Article  Google Scholar 

  67. Dewapriya, M.A.N., Rajapakse, R.K.N.D., Phani, A.S.: Atomistic and continuum modelling of temperature-dependent fracture of graphene. Int. J. Fract. 187, 199 (2014)

    Article  Google Scholar 

  68. Kundalwal, S.I., Choyal, V.: Transversely isotropic elastic properties of carbon nanotubes containing vacancy defects using MD. Acta Mech. 229, 2571–2584 (2018)

    Article  Google Scholar 

  69. Choyal, V., Kundalwal, S.I.: Effect of Stone-Wales defects on the mechanical behavior of boron nitride nanotubes. Acta Mech. 231, 4003–4018 (2020)

    Article  Google Scholar 

  70. Evans, D.J., Holian, B.L.: The Nose-Hoover thermostat. J. Chem. Phys. 83, 4069 (1985)

    Article  Google Scholar 

  71. Choyal, V., Choyal, V.K., Kundalwal, S.I.: Effect of atom vacancies on elastic and electronic properties of transversely isotropic boron nitride nanotubes: A comprehensive computational study. Comput. Mater. Sci. 156, 332–345 (2019)

    Article  Google Scholar 

  72. Tan, D., Willatzen, M., Wang, Z.L.: Out-of-plane polarization in bent graphene-like zinc oxide and nanogenerator applications. Adv. Funct. Mater. 30, 1907885 (2020)

    Article  Google Scholar 

  73. Tan, D., Willatzen, M., Wang, Z.L.: Prediction of strong piezoelectricity in 3R-MoS2 multilayer structures. Nano Energy 56, 512 (2019)

    Article  Google Scholar 

  74. Xiong, S., Cao, G.: Molecular dynamics simulations of mechanical properties of monolayer MoS2. Nanotechnology 27, 105701 (2015)

    Article  Google Scholar 

  75. Javvaji, B., He, B., Zhuang, X., Park, H.S.: High flexoelectric constants in Janus transition-metal dichalcogenides. Phys. Rev. Mater. 3, 125402 (2019)

    Article  Google Scholar 

  76. Li, C., Wang, Z., Li, F., Rao, Z., Huang, W., Shen, Z., Ke, S., Shu, L.: Large flexoelectric response in PMN-PT ceramics through composition design. Appl. Phys. Lett. 115, 142901 (2019)

    Article  Google Scholar 

  77. Wirtz, L., Rubio, A.: The phonon dispersion of graphite revisited. Solid State Commun. 63, 045425 (2004)

    Google Scholar 

  78. Moon, W.H., Hwang, H.J.: Molecular mechanics of structural properties of boron nitride nanotubes. Phys. E Low-Dimens. Syst. Nanostruct. 23, 26–30 (2004)

    Article  Google Scholar 

  79. Duerloo, K.A.N., Ong, M.T., Reed, E.J.: Intrinsic piezoelectricity in two-dimensional materials. J. Phys. Chem. Lett. 13, 1681 (2012)

    Google Scholar 

  80. Beheshtian, J., Sadeghi, A., Neek-Amal, M., Michel, K.H., Peeters, F.M.: Induced polarization and electronic properties of carbon-doped boron nitride nanoribbons. Phys. Rev. B - Condens. Matter Mater. Phys. 86, 195433 (2012)

    Article  Google Scholar 

  81. Ansari, R., Mirnezhad, M., Sahmani, S.: Prediction of chirality- and size-dependent elastic properties of single-walled boron nitride nanotubes based on an accurate molecular mechanics model. Superlattices Microstruct. 80, 196 (2015)

    Article  Google Scholar 

  82. Thomas, S., Ajith, K.M., Chandra, S., Valsakumar, M.C.: Temperature dependent structural properties and bending rigidity of pristine and defective hexagonal boron nitride. J. Phys. Condens. Matter. 27, 315302 (2015)

    Article  Google Scholar 

  83. Gao, E., Xu, Z.: Thin-shell thickness of two-dimensional materials. J. Appl. Mech. Trans. ASME. 82, 121012 (2015)

    Article  Google Scholar 

  84. Kang, S., Jeon, S., Kim, S., Seol, D., Yang, H., Lee, J., Kim, Y.: Tunable out-of-plane piezoelectricity in thin-layered MoTe2 by surface corrugation-mediated flexoelectricity. ACS Appl. Mater. Interfaces. 10, 27424–27431 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The work was fully supported by the Science Engineering Research Board (SERB), Department of Science and Technology, Government of India. S.I.K. acknowledges the support of the SERB Early Career Research Award Grant (ECR/2017/001863) awarded to him.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Kundalwal.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: MD simulations parameters

Appendix A: MD simulations parameters

The parameters n, \(\beta\), \(\lambda _{{ij}}^{I}\), B, \(\lambda _{{ij}}^{{II}}\), and A are used for two-body interactions. The parameters m, \(\gamma\), \(\lambda _{3}^{m}\), c, d, and \(\text{cos}\,\theta _{0}\) are used for three-body interactions. R and D are adjustable parameters which can be used for both two- and three-body interactions. The value of m = 3,\(~\beta\) = 0, and \(\gamma\) = 1 are taken as constant. The different parameters \(\lambda _{{ij}}^{I}\), \(\lambda _{{ij}}^{{II}}\), \(A_{{ij~}}\), \(B_{{ij~}}\), \(R_{{ij~}}\), and \(S_{{ij~}}\) for species i and j can be calculated using the following mixing rules:

$$ \lambda _{{ij}}^{I} = ~\frac{1}{2}\left( {\lambda _{i}^{I} + \lambda _{j}^{I} } \right), $$
(A1)
$$ \lambda _{{ij}}^{{II}} = ~\frac{1}{2}\left( {\lambda _{i}^{{II}} + \lambda _{j}^{{II}} } \right), $$
(A2)
$$ A_{{ij~}} = ~\left( {A_{i} \times A_{j} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}, $$
(A3)
$$ B_{{ij~}} = ~\left( {B_{i} \times B_{j} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}, $$
(A4)
$$ R_{{ij~}} = ~\left( {R_{i} \times R_{j} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}, $$
(A5)
$$ S_{{ij~}} = ~\left( {S_{i} \times S_{j} } \right)^{{{\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-\nulldelimiterspace} \!\lower0.7ex\hbox{$2$}}}}. $$
(A6)

Refer to Table 3.

Table 3 MD parameters of Tersoff potentials for modeling B-B, N–N, B-N, C–C, C–N and C–B interactions [3, 62, 63]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundalwal, S.I., Choyal, V.K. & Choyal, V. Flexoelectric effect in boron nitride–graphene heterostructures. Acta Mech 232, 3781–3800 (2021). https://doi.org/10.1007/s00707-021-03022-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-03022-4

Navigation