Skip to main content
Log in

Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A finite-element model is presented based on the four-variable shear deformation refined theory for active vibration control of a functionally graded carbon nanotube-reinforced composite spherical panel with integrated piezoelectric layers, acting as an actuator and a sensor. The linear distribution of the electric potential across the thickness of the piezoelectric layer and different distribution types of carbon nanotubes through the thickness of the layers are considered. The weak form of the governing equation is derived using Hamilton's principle, and a four-node nonconforming rectangular element with eight mechanical and two electrical degrees of freedom per node is introduced for discretising the domain. A constant velocity feedback approach is utilised for the active control of the panel by closed-loop control with a piezoelectric sensor and actuator. The convergence and accuracy of the model are validated by comparing numerical results with data available in literature. Some new parametric studies are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ansari, R., Gholami, R., Ajori, S.: Torsional vibration analysis of carbon nanotubes based on the strain gradient theory and molecular dynamic simulations. J. Vib. Acoust. 135(5), 051016 (2013)

    Article  Google Scholar 

  2. Khademolhosseini, F., Phani, A.S., Nojeh, A., Rajapakse, N.: Nonlocal continuum modeling and molecular dynamics simulation of torsional vibration of carbon nanotubes. IEEE Trans. Nanotechnol. 11(1), 34–43 (2011)

    Article  Google Scholar 

  3. Zenkour, A.M.: Torsional dynamic response of a carbon nanotube embedded in visco-Pasternak’s medium. Math. Model. Anal. 21(6), 852–868 (2016)

    Article  MathSciNet  Google Scholar 

  4. Zenkour, A.: Nonlocal elasticity and shear deformation effects on thermal buckling of a CNT embedded in a viscoelastic medium. Eur. Phys. J. Plus 133(5), 196 (2018)

    Article  Google Scholar 

  5. Zhang, L., Song, Z., Liew, K.: Nonlinear bending analysis of FG-CNT reinforced composite thick plates resting on Pasternak foundations using the element-free IMLS-Ritz method. Compos. Struct. 128, 165–175 (2015)

    Article  Google Scholar 

  6. Zhang, L., Liew, K.: Large deflection analysis of FG-CNT reinforced composite skew plates resting on Pasternak foundations using an element-free approach. Compos. Struct. 132, 974–983 (2015)

    Article  Google Scholar 

  7. Zhang, L., Liew, K.: Geometrically nonlinear large deformation analysis of functionally graded carbon nanotube reinforced composite straight-sided quadrilateral plates. Comput. Methods Appl. Mech. Eng. 295, 219–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Zhang, L., Liu, W., Liew, K.: Geometrically nonlinear large deformation analysis of triangular CNT-reinforced composite plates. Int. J. Non-Linear Mech. 86, 122–132 (2016)

    Article  Google Scholar 

  9. Zhang, L., Song, Z., Liew, K.: State-space Levy method for vibration analysis of FG-CNT composite plates subjected to in-plane loads based on higher-order shear deformation theory. Compos. Struct. 134, 989–1003 (2015)

    Article  Google Scholar 

  10. Zhang, L., Zhang, Y., Zou, G., Liew, K.: Free vibration analysis of triangular CNT-reinforced composite plates subjected to in-plane stresses using FSDT element-free method. Compos. Struct. 149, 247–260 (2016)

    Article  Google Scholar 

  11. Zhang, L., Xiao, L., Zou, G., Liew, K.: Elastodynamic analysis of quadrilateral CNT-reinforced functionally graded composite plates using FSDT element-free method. Compos. Struct. 148, 144–154 (2016)

    Article  Google Scholar 

  12. Zhang, L.: On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates. Compos. Struct. 160, 824–837 (2017)

    Article  Google Scholar 

  13. Zhang, L., Cui, W., Liew, K.: Vibration analysis of functionally graded carbon nanotube reinforced composite thick plates with elastically restrained edges. Int. J. Mech. Sci. 103, 9–21 (2015)

    Article  Google Scholar 

  14. Lei, Z., Zhang, L., Liew, K.: Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates. Int. J. Mech. Sci. 99, 208–217 (2015)

    Article  Google Scholar 

  15. Zhang, L., Song, Z., Qiao, P., Liew, K.: Modeling of dynamic responses of CNT-reinforced composite cylindrical shells under impact loads. Comput. Methods Appl. Mech. Eng. 313, 889–903 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lei, Z., Zhang, L., Liew, K.: Analysis of laminated CNT reinforced functionally graded plates using the element-free kp-Ritz method. Compos. B Eng. 84, 211–221 (2016)

    Article  Google Scholar 

  17. Lei, Z., Zhang, L., Liew, K.: Free vibration analysis of laminated FG-CNT reinforced composite rectangular plates using the kp-Ritz method. Compos. Struct. 127, 245–259 (2015)

    Article  Google Scholar 

  18. Bouazza, M., Zenkour, A.M.: Vibration of carbon nanotube-reinforced plates via refined nth-higher-order theory. Arch. Appl. Mech. 90, 1755–1769 (2020)

    Article  Google Scholar 

  19. Liew, K.M., Pan, Z., Zhang, L.-W.: The recent progress of functionally graded CNT reinforced composites and structures. Sci. China Phys. Mech. Astron. 63(3), 234601 (2020)

    Article  Google Scholar 

  20. Sobhy, M., Zenkour, A.M.: Magnetic field effect on thermomechanical buckling and vibration of viscoelastic sandwich nanobeams with CNT reinforced face sheets on a viscoelastic substrate. Compos. B Eng. 154, 492–506 (2018)

    Article  Google Scholar 

  21. Zenkour, A.M., El-Shahrany, H.D.: Control of a laminated composite plate resting on Pasternak’s foundations using magnetostrictive layers. Arch. Appl. Mech. 90, 1943–1959 (2020)

    Article  Google Scholar 

  22. Zenkour, A., El-Shahrany, H.: Vibration suppression analysis for laminated composite beams embedded actuating magnetostrictive layers. J. Comput. Appl. Mech. 50(1), 69–75 (2019)

    Google Scholar 

  23. Zenkour, A.M., El-Shahrany, H.D.: Vibration suppression of advanced plates embedded magnetostrictive layers via various theories. J. Mater. Res. Technol. 9, 4727–4748 (2020)

    Article  Google Scholar 

  24. Zenkour, A., El-Shahrany, H.: Vibration suppression of magnetostrictive laminated beams resting on viscoelastic foundation. Appl. Math. Mech. 41(8), 1269–1286 (2020)

    Article  Google Scholar 

  25. Alibeigloo, A.: Static analysis of functionally graded carbon nanotube-reinforced composite plate embedded in piezoelectric layers by using theory of elasticity. Compos. Struct. 95, 612–622 (2013)

    Article  Google Scholar 

  26. Alibeigloo, A.: Elasticity solution of functionally graded carbon-nanotube-reinforced composite cylindrical panel with piezoelectric sensor and actuator layers. Smart Mater. Struct. 22(7), 075013 (2013)

    Article  MathSciNet  Google Scholar 

  27. Alibeigloo, A.: Three-dimensional thermoelasticity solution of functionally graded carbon nanotube reinforced composite plate embedded in piezoelectric sensor and actuator layers. Compos. Struct. 118, 482–495 (2014)

    Article  Google Scholar 

  28. Alibeigloo, A.: Thermoelastic analysis of functionally graded carbon nanotube reinforced composite cylindrical panel embedded in piezoelectric sensor and actuator layers. Compos. B Eng. 98, 225–243 (2016)

    Article  Google Scholar 

  29. Alibeigloo, A.: Free vibration analysis of functionally graded carbon nanotube-reinforced composite cylindrical panel embedded in piezoelectric layers by using theory of elasticity. Eur. J. Mech. A/Solids 44, 104–115 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rafiee, M., He, X., Liew, K.: Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int. J. Non-Linear Mech. 59, 37–51 (2014)

    Article  Google Scholar 

  31. Rafiee, M., Liu, X., He, X., Kitipornchai, S.: Geometrically nonlinear free vibration of shear deformable piezoelectric carbon nanotube/fiber/polymer multiscale laminated composite plates. J. Sound Vib. 333(14), 3236–3251 (2014)

    Article  Google Scholar 

  32. Wu, C.-P., Chang, S.-K.: Stability of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers and under bi-axial compression. Compos. Struct. 111, 587–601 (2014)

    Article  Google Scholar 

  33. Nasihatgozar, M., Daghigh, V., Eskandari, M., Nikbin, K., Simoneau, A.: Buckling analysis of piezoelectric cylindrical composite panels reinforced with carbon nanotubes. Int. J. Mech. Sci. 107, 69–79 (2016)

    Article  Google Scholar 

  34. Ansari, R., Pourashraf, T., Gholami, R., Shahabodini, A.: Analytical solution for nonlinear postbuckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers. Compos. B Eng. 90, 267–277 (2016)

    Article  Google Scholar 

  35. Kiani, Y.: Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers. Comput. Math. Appl. 72(9), 2433–2449 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kolahchi, R., Zarei, M.S., Hajmohammad, M.H., Nouri, A.: Wave propagation of embedded viscoelastic FG-CNT-reinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory. Int. J. Mech. Sci. 130, 534–545 (2017)

    Article  Google Scholar 

  37. Setoodeh, A., Shojaee, M., Malekzadeh, P.: Application of transformed differential quadrature to free vibration analysis of FG-CNTRC quadrilateral spherical panel with piezoelectric layers. Comput. Methods Appl. Mech. Eng. 335, 510–537 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Nguyen-Quang, K., Vo-Duy, T., Dang-Trung, H., Nguyen-Thoi, T.: An isogeometric approach for dynamic response of laminated FG-CNT reinforced composite plates integrated with piezoelectric layers. Comput. Methods Appl. Mech. Eng. 332, 25–46 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Selim, B., Yin, B., Liew, K.: Impact analysis of CNT-reinforced composite plates integrated with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos. B Eng. 136, 10–19 (2018)

    Article  Google Scholar 

  40. Zhang, L., Song, Z., Liew, K.: Optimal shape control of CNT reinforced functionally graded composite plates using piezoelectric patches. Compos. B Eng. 85, 140–149 (2016)

    Article  Google Scholar 

  41. Tran, H.Q., Van, T., Tran, M.T., Nguyen-Tri, P.: A new four-variable refined plate theory for static analysis of smart laminated functionally graded carbon nanotube reinforced composite plates. Mech. Mater. 142, 103294 (2020)

    Article  Google Scholar 

  42. Huu Quoc, T., Minh Tu, T., Van Tham, V.: Free vibration analysis of smart laminated functionally graded CNT reinforced composite plates via new four-variable refined plate theory. Materials 12(22), 3675 (2019)

    Article  Google Scholar 

  43. Song, Z., Zhang, L., Liew, K.: Active vibration control of CNT reinforced functionally graded plates based on a higher-order shear deformation theory. Int. J. Mech. Sci. 105, 90–101 (2016)

    Article  Google Scholar 

  44. Song, Z., Zhang, L., Liew, K.: Active vibration control of CNT-reinforced composite cylindrical shells via piezoelectric patches. Compos. Struct. 158, 92–100 (2016)

    Article  Google Scholar 

  45. Sharma, A., Kumar, A., Susheel, C., Kumar, R.: Smart damping of functionally graded nanotube reinforced composite rectangular plates. Compos. Struct. 155, 29–44 (2016)

    Article  Google Scholar 

  46. Zhang, L., Lei, Z., Liew, K., Yu, J.: Static and dynamic of carbon nanotube reinforced functionally graded cylindrical panels. Compos. Struct. 111, 205–212 (2014)

    Article  Google Scholar 

  47. Selim, B., Zhang, L., Liew, K.: Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos. Struct. 163, 350–364 (2017)

    Article  Google Scholar 

  48. Fidelus, J., Wiesel, E., Gojny, F., Schulte, K., Wagner, H.: Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos. A Appl. Sci. Manuf. 36(11), 1555–1561 (2005)

    Article  Google Scholar 

  49. Van Tham, V., Huu Quoc, T., Minh Tu., T. : Free vibration analysis of laminated functionally graded carbon nanotube-reinforced composite doubly curved shallow shell panels using a new four-variable refined theory. J. Compos. Sci. 3(4), 104 (2019)

    Article  Google Scholar 

  50. Shen, H.-S.: Nonlinear bending of functionally graded carbon nanotube-reinforced composite plates in thermal environments. Compos. Struct. 91(1), 9–19 (2009)

    Article  Google Scholar 

  51. El Meiche, N., Tounsi, A., Ziane, N., Mechab, I.: A new hyperbolic shear deformation theory for buckling and vibration of functionally graded sandwich plate. Int. J. Mech. Sci. 53(4), 237–247 (2011)

    Article  Google Scholar 

  52. Ray, M., Sachade, H.: Finite element analysis of smart functionally graded plates. Int. J. Solids Struct. 43(18–19), 5468–5484 (2006)

    Article  MATH  Google Scholar 

  53. Zenkour, A.M., Alghanmi, R.A.: Bending of exponentially graded plates integrated with piezoelectric fiber-reinforced composite actuators resting on elastic foundations. Eur. J. Mech. A/Solids 75, 461–471 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  54. Shiyekar, S., Kant, T.: Higher order shear deformation effects on analysis of laminates with piezoelectric fibre reinforced composite actuators. Compos. Struct. 93(12), 3252–3261 (2011)

    Article  Google Scholar 

  55. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  56. Farsangi, M.A., Saidi, A.: Levy type solution for free vibration analysis of functionally graded rectangular plates with piezoelectric layers. Smart Mater. Struct. 21(9), 094017 (2012)

    Article  Google Scholar 

  57. Farsangi, M.A., Saidi, A., Batra, R.: Analytical solution for free vibrations of moderately thick hybrid piezoelectric laminated plates. J. Sound Vib. 332(22), 5981–5998 (2013)

    Article  Google Scholar 

  58. Rouzegar, J., Abad, F.: Free vibration analysis of FG plate with piezoelectric layers using four-variable refined plate theory. Thin Walled Struct. 89, 76–83 (2015)

    Article  Google Scholar 

  59. Sayyaadi, H., Farsangi, M.A.A.: An analytical solution for dynamic behavior of thick doubly curved functionally graded smart panels. Compos. Struct. 107, 88–102 (2014)

    Article  Google Scholar 

  60. Newmark, N.M.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85(3), 67–94 (1959)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation for Science and Technology Development of the National University of Civil Engineering, Ha Noi, Vietnam (Project Code 26-2020/KHXD-TĐ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Huu Quoc.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest in preparing this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quoc, T.H., Van Tham, V. & Tu, T.M. Active vibration control of a piezoelectric functionally graded carbon nanotube-reinforced spherical shell panel. Acta Mech 232, 1005–1023 (2021). https://doi.org/10.1007/s00707-020-02899-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02899-x

Navigation