Skip to main content
Log in

An open-source computational framework for optimization of laminated composite plates

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the present paper, a flexible framework is developed for the optimization of composite laminate plates. In this framework, an optimization algorithm is employed to find the optimal stacking sequence design of the FE models by interfacing the Abaqus solver with MATLAB through a Python script. The Python script submits dimension, orientation, and diameter of the cutout combinations to Abaqus/CAE. The performance of the codes is validated by applying them to several problems of previous research. Three distinct types of boundary conditions, namely CCCC, SCSC, and SSSS, with different geometries comprising a square and rectangular plates with and without cutouts, are considered as optimal design problems. Besides that, analyses are performed on new symmetrical composites with 16 and 80 plies. The framework is equipped with the GA for optimizing the fiber orientations and maximizing the buckling capacities. The results are comprehensively discussed, showing a reasonable agreement with the literature. This code can easily be used by scientists and industry professionals as an automated tool for optimizing different finite element models and using any arbitrary optimization algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Kaw, A.K.: Mechanics of Composite Materials. CRC Press, Boca Raton (2005)

    Book  Google Scholar 

  2. Jones, R.M.: Mechanics of Composite Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  3. Reddy, J.N.: Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  4. Khalkhali, A., Geran Malek, N., Bozorgi Nejad, M.: Effects of the impactor geometrical shape on the non-linear low-velocity impact response of sandwich plate with CNTRC face sheets. J. Sandw. Struct. Mater. (2018). https://doi.org/10.1177/1099636218778998

    Article  Google Scholar 

  5. Khalkhali, A., Ebrahimi-Nejad, S., Malek, N.G.: Comprehensive optimization of friction stir weld parameters of lap joint AA1100 plates using artificial neural networks and modified NSGA-II. Mater. Res. Express 5(6), 066508 (2018). https://doi.org/10.1088/2053-1591/aac6f6

    Article  Google Scholar 

  6. Sargent, P.M., Ige, D.O., Ball, N.R.: Design of laminate composite layups using genetic algorithms. Eng. Comput. 11(2), 59–69 (1995). https://doi.org/10.1007/BF01312200

    Article  Google Scholar 

  7. McMahon, M.T., Watson, L.T., Soremekun, G.A., Gürdal, Z., Haftka, R.T.: A Fortran 90 genetic algorithm module for composite laminate structure design. Eng. Comput. 14(3), 260–273 (1998). https://doi.org/10.1007/BF01215979

    Article  Google Scholar 

  8. Karakaya, Ş., Soykasap, Ö.: Buckling optimization of laminated composite plates using genetic algorithm and generalized pattern search algorithm. Struct. Multidiscip. Optim. 39(5), 477–486 (2009)

    Article  Google Scholar 

  9. Pai, N., Kaw, A., Weng, M.: Optimization of laminate stacking sequence for failure load maximization using Tabu search. Compos. Part B Eng. 34(4), 405–413 (2003). https://doi.org/10.1016/S1359-8368(02)00135-X

    Article  Google Scholar 

  10. Matsuzaki, R., Todoroki, A.: Stacking-sequence optimization using fractal branch-and-bound method for unsymmetrical laminates. Compos. Struct. 78(4), 537–550 (2007). https://doi.org/10.1016/j.compstruct.2005.11.015

    Article  Google Scholar 

  11. Erdal, O., Sonmez, F.O.: Optimum design of composite laminates for maximum buckling load capacity using simulated annealing. Compos. Struct. 71(1), 45–52 (2005)

    Article  Google Scholar 

  12. Rao, A.R.M., Arvind, N.: A scatter search algorithm for stacking sequence optimisation of laminate composites. Compos. Struct. 70(4), 383–402 (2005)

    Article  Google Scholar 

  13. de Almeida, F.S.: Stacking sequence optimization for maximum buckling load of composite plates using harmony search algorithm. Compos. Struct. 143, 287–299 (2016)

    Article  Google Scholar 

  14. Abachizadeh, M., Tahani, M.: An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximum fundamental frequency and minimum cost. Struct. Multidiscip. Optim. 37(4), 367–376 (2009). https://doi.org/10.1007/s00158-008-0235-6

    Article  Google Scholar 

  15. Sebaey, T., Lopes, C., Blanco, N., Costa, J.: Ant colony optimization for dispersed laminated composite panels under biaxial loading. Compos. Struct. 94(1), 31–36 (2011). https://doi.org/10.1016/j.compstruct.2011.07.021

    Article  Google Scholar 

  16. Ho-Huu, V., Do-Thi, T., Dang-Trung, H., Vo-Duy, T., Nguyen-Thoi, T.: Optimization of laminated composite plates for maximizing buckling load using improved differential evolution and smoothed finite element method. Compos. Struct. 146, 132–147 (2016). https://doi.org/10.1016/j.compstruct.2016.03.016

    Article  Google Scholar 

  17. de Almeida, F.S.: Optimization of laminated composite structures using harmony search algorithm. Compos. Struct. (2019). https://doi.org/10.1016/j.compstruct.2019.04.024

    Article  Google Scholar 

  18. Javidrad, F., Nazari, M., Javidrad, H.: Optimum stacking sequence design of laminates using a hybrid PSO-SA method. Compos. Struct. 185, 607–618 (2018). https://doi.org/10.1016/j.compstruct.2017.11.074

    Article  Google Scholar 

  19. Marouene, A., Boukhili, R., Chen, J., Yousefpour, A.: Effects of gaps and overlaps on the buckling behavior of an optimally designed variable-stiffness composite laminates—a numerical and experimental study. Compos. Struct. 140, 556–566 (2016). https://doi.org/10.1016/j.compstruct.2016.01.012

    Article  Google Scholar 

  20. Ouinas, D., Achour, B.: Buckling analysis of laminated composite plates [(\(\theta /- \theta )\)] containing an elliptical notch. Compos. Part B Eng. 55, 575–579 (2013). https://doi.org/10.1016/j.compositesb.2013.07.011

    Article  Google Scholar 

  21. Hu, H.-T., Chen, H.-C.: Buckling optimization of laminated truncated conical shells subjected to external hydrostatic compression. Compos. Part B Eng. 135, 95–109 (2018). https://doi.org/10.1016/j.compositesb.2017.09.065

    Article  Google Scholar 

  22. Shrivastava, S., Mohite, P., Yadav, T., Malagaudanavar, A.: Multi-objective multi-laminate design and optimization of a carbon fibre composite wing torsion box using evolutionary algorithm. Compos. Struct. 185, 132–147 (2018). https://doi.org/10.1016/j.compstruct.2017.10.041

    Article  Google Scholar 

  23. Shrivastava, S., Mohite, P.M., Limaye, M.D.: Optimal design of fighter aircraft wing panels laminates under multi-load case environment by ply-drop and ply-migrations. Compos. Struct. 207, 909–922 (2019). https://doi.org/10.1016/j.compstruct.2018.09.004

    Article  Google Scholar 

  24. Kazemzadeh Azad, S., Akış, T.: Automated selection of optimal material for pressurized multi-layer composite tubes based on an evolutionary approach. Neural Comput. Appl. 29(7), 405–416 (2018). https://doi.org/10.1007/s00521-016-2563-6

    Article  Google Scholar 

  25. Kazemzadeh Azad, S., Akış, T.: A study of shrink-fitting for optimal design of multi-layer composite tubes subjected to internal and external pressure. Iran. J. Sci. Technol. Trans. Mech. Eng. 43(1), 451–467 (2019). https://doi.org/10.1007/s40997-018-0170-0

    Article  Google Scholar 

  26. Kaveh, A., Dadras, A., Malek, N.G.: Buckling load of laminated composite plates using three variants of the biogeography-based optimization algorithm. Acta Mech. 229(4), 1551–1566 (2018). https://doi.org/10.1007/s00707-017-2068-0

    Article  MathSciNet  Google Scholar 

  27. Kaveh, A., Dadras, A., Geran Malek, N.: Optimum stacking sequence design of composite laminates for maximum buckling load capacity using parameter-less optimization algorithms. Eng. Comput. (2018). https://doi.org/10.1007/s00366-018-0634-2

    Article  Google Scholar 

  28. Kaveh, A., Dadras, A., Geran Malek, N.: Robust design optimization of laminated plates under uncertain bounded buckling loads. Struct. Multidiscip. Optim. 59(3), 877–891 (2019). https://doi.org/10.1007/s00158-018-2106-0

    Article  MathSciNet  Google Scholar 

  29. Systèmes, D.: Abaqus 6.10: Analysis User’s Manual. Dassault Systèmes Simulia Corp, Providence (2010)

    Google Scholar 

  30. Van Rossum, G.: Python programming language. In: USENIX Annual Technical Conference, p. 36 (2007)

  31. Kaveh, A.: Advances in Metaheuristic Algorithms for Optimal Design of Structures, 2nd edn. Springer, Berlin (2017)

    Book  Google Scholar 

  32. Kaveh, A.: Applications of Metaheuristic Optimization Algorithms in Civil Engineering, vol. PUBDB-2017-153072. Springer, Berlin (2017)

    Book  Google Scholar 

  33. Kaveh, A., Bakhshpoori, T.: Metaheuristics: Outlines, MATLAB Codes and Examples. Springer, Berlin (2019)

    Book  Google Scholar 

  34. Hu, H.-T., Lin, B.-H.: Buckling optimization of symmetrically laminated plates with various geometries and end conditions. Compos. Sci. Technol. 55(3), 277–285 (1995). https://doi.org/10.1016/0266-3538(95)00105-0

    Article  Google Scholar 

  35. Kaveh, A., Kalatjari, V.: Genetic algorithm for discrete-sizing optimal design of trusses using the force method. Int. J. Numer. Methods Eng. 55(1), 55–72 (2002). https://doi.org/10.1002/nme.483

    Article  MATH  Google Scholar 

  36. Kaveh, A., Rahami, H.: Analysis, design and optimization of structures using force method and genetic algorithm. Int. J. Numer. Methods Eng. 65(10), 1570–1584 (2006). https://doi.org/10.1002/nme.1506

    Article  MATH  Google Scholar 

  37. Kaveh, A., Kalatjari, V.: Topology optimization of trusses using genetic algorithm, force method and graph theory. Int. J. Numer. Methods Eng. 58(5), 771–791 (2003). https://doi.org/10.1002/nme.800

    Article  MATH  Google Scholar 

  38. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. MIT press, Cambridge (1992)

    Book  Google Scholar 

  39. Sivanandam, S., Deepa, S.: Introduction to Genetic Algorithms. Springer, Berlin (2007)

    MATH  Google Scholar 

  40. Kaveh, A., Ilchi Ghazaan, M.: A comparative study of CBO and ECBO for optimal design of skeletal structures. Comput. Struct. 153, 137–147 (2015)

    Article  Google Scholar 

  41. Arora, J.: Introduction to Optimum Design. Elsevier Science, Amsterdam (2011)

    Google Scholar 

  42. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: Rawlins, G.J.E. (ed.) Foundations of Genetic Algorithms, vol. 1, pp. 69–93. Elsevier, Amsterdam (1991)

    Google Scholar 

  43. Sivaraj, R., Ravichandran, T.: A review of selection methods in genetic algorithm. Int. J. Eng. Sci. Technol. 3(5), 3792–3797 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kaveh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaveh, A., Dadras Eslamlou, A., Geran Malek, N. et al. An open-source computational framework for optimization of laminated composite plates. Acta Mech 231, 2629–2650 (2020). https://doi.org/10.1007/s00707-020-02648-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02648-0

Navigation