Skip to main content
Log in

Torsional surface wave propagation in a transversely isotropic FG substrate with piezoelectric over-layer within surface/interface theory

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Propagation of the torsional surface waves in a medium consisting of a functionally graded (FG) substrate bonded to a thin piezoelectric over-layer has been analytically formulated in the mathematical framework of surface/interface elasticity theory. In the cases where the wavelength and/or the thickness of the over-layer are comparable to the surface/interface characteristic length, then the surface/interface effects are not negligible. It is assumed that the over-layer is made of hexagonal 622 crystals with a single axis of rotational symmetry coinciding with the axis of polarization. The half-space is made of an FG transversely isotropic material in which the elasticity tensor and the mass density vary linearly with depth. Accounting for the surface/interface effects, the pertinent dispersion relation is derived analytically and verified for five different limiting cases of the proposed problem. The effect of the inhomogeneity parameters of the FG half-space and the surface/interface parameters on the dispersion relation is studied numerically, and the results are compared with those obtained from the classical theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ezzin, H., Amor, M.B., Ghozlen, M.H.B.: Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. Ultrasonics 69, 83–89 (2016)

    Article  Google Scholar 

  2. Jin, F., Qian, Z., Wang, Z., Kishimoto, K.: Propagation behavior of Love waves in a piezoelectric layered structure with inhomogeneous initial stress. Smart Mater. Struct. 14(4), 515 (2005)

    Article  Google Scholar 

  3. Liu, H., Wang, Z.K., Wang, T.J.: Effect of initial stress on the propagation behavior of Love waves in a layered piezoelectric structure. Int. J. Solids Struct. 38(1), 37–51 (2001)

    Article  Google Scholar 

  4. Salah, I.B., Njeh, A., Ghozlen, M.H.B.: A theoretical study of the propagation of Rayleigh waves in a functionally graded piezoelectric material (FGPM). Ultrasonics 52(2), 306–314 (2012)

    Article  Google Scholar 

  5. Achenbach, J.: Wave Propagation in Elastic Solids, vol. 16. Elsevier, Amsterdam (2012)

    MATH  Google Scholar 

  6. Eringen, A.C., Suhubi, E.S.: Elastodynamics, vol. II. Academic, New York (1975)

    MATH  Google Scholar 

  7. Gurtin, M.E., Murdoch, A.I.: A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57(4), 291–323 (1975)

    Article  MathSciNet  Google Scholar 

  8. Gurtin, M.E., Murdoch, A.I.: Surface stress in solids. Int. J. Solids Struct. 14(6), 431–440 (1978)

    Article  Google Scholar 

  9. Enzevaee, C., Shodja, H.M.: Crystallography and surface effects on the propagation of Love and Rayleigh surface waves in fcc semi-infinite solids. Int. J. Solids Struct. 138, 109–117 (2018)

    Article  Google Scholar 

  10. Mi, C., Jun, S., Kouris, D.A., Kim, S.Y.: Atomistic calculations of interface elastic properties in noncoherent metallic bilayers. Phys. Rev. B 77(7), 075425 (2008)

    Article  Google Scholar 

  11. Miller, R.E., Shenoy, V.B.: Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3), 139 (2000)

    Article  Google Scholar 

  12. Pahlevani, L., Shodja, H.M.: Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: determination of the surface/interface elastic properties via an atomistic approach. J. Appl. Mech. 78(1), 011011 (2011)

    Article  Google Scholar 

  13. Shodja, H.M., Enzevaee, C.: Surface characterization of face-centered cubic crystals. Mech. Mater. 129, 15–22 (2019)

    Article  Google Scholar 

  14. Chen, Q., Wang, G., Pindera, M.J.: Homogenization and localization of nanoporous composites—a critical review and new developments. Compos. Part B Eng. 155, 329–368 (2018)

    Article  Google Scholar 

  15. Enzevaee, C., Gutkin, M.Y., Shodja, H.M.: Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire. Philos. Mag. 94(5), 492–519 (2014)

    Article  Google Scholar 

  16. Fang, Q.H., Liu, Y.W.: Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects. Acta Mater. 54(16), 4213–4220 (2006)

    Article  Google Scholar 

  17. Gutkin, M.Y., Enzevaee, C., Shodja, H.M.: Interface effects on elastic behavior of an edge dislocation in a core–shell nanowire embedded to an infinite matrix. Int. J. Solids Struct. 50(7–8), 1177–1186 (2013)

    Article  Google Scholar 

  18. Shodja, H.M., Enzevaee, C., Gutkin, M.Y.: Interface effect on the formation of a dipole of screw misfit dislocations in an embedded nanowire with uniform shear eigenstrain field. Eur. J. Mech. A/Solids 51, 154–159 (2015)

    Article  MathSciNet  Google Scholar 

  19. Wang, G., Chen, Q., He, Z., Pindera, M.J.: Homogenized moduli and local stress fields of unidirectional nano-composites. Compos. Part B Eng. 138, 265–277 (2018)

    Article  Google Scholar 

  20. Wolfer, W.G.: Elastic properties of surfaces on nanoparticles. Acta Mater. 59(20), 7736–7743 (2011)

    Article  Google Scholar 

  21. Ru, Y., Wang, G.F., Wang, T.J.: Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect. J. Vib. Acoust. 131(6), 061011 (2009)

    Article  Google Scholar 

  22. Shodja, H.M., Ghafarollahi, A., Enzevaee, C.: Surface/interface effect on the scattering of love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. Int. J. Solids Struct. 108, 63–73 (2017)

    Article  Google Scholar 

  23. Dey, S., Gupta, A.K., Gupta, S.: Propagation of torsional surface waves in a homogeneous substratum over a heterogeneous half-space. Int. J. Numer. Anal. Methods Geomech. 20(4), 287–294 (1996)

    Article  Google Scholar 

  24. Heywang, W., Lubitz, K., Wersing, W. (eds.): Piezoelectricity: Evolution and Future of a Technology, vol. 114. Springer, Berlin (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Shodja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Enzevaee, C., Shodja, H.M. Torsional surface wave propagation in a transversely isotropic FG substrate with piezoelectric over-layer within surface/interface theory. Acta Mech 231, 2203–2216 (2020). https://doi.org/10.1007/s00707-020-02638-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02638-2

Navigation