Skip to main content
Log in

Dislocation emission from a cylindrical circular void separating two disclination dipoles in a high-angle grain boundary

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The formation of an edge dislocation from the surface of a cylindrical circular cavity lying in a high-angle grain boundary and separating two disclination dipoles located in the boundary has been investigated from a theoretical point of view. The energy variation due to the dislocation introduction into one grain has been determined, and the equilibrium positions (stable or unstable) of the emitted dislocation have been characterized as a function of the direction of the Burgers vector, the strength and length of the disclination dipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jain, M., Christman, T.: Synthesis, processing, and deformation of bulk nanophase Fe–28Al–2Cr intermetallic. Acta Metall. Mater. 42, 1901–1911 (1994)

    Article  Google Scholar 

  2. Sutton, A.P., Balluffi, R.W.: Interfaces in Crystalline Materials. Clarendon Press, Oxford (1995)

    Google Scholar 

  3. Zelin, M.G., Mukherjee, A.K.: Cooperative phenomena at grain boundaries during superplastic flow. Acta Metall. Mater. 43, 2359–2372 (1995)

    Article  Google Scholar 

  4. Li, Z., Yang, F.: Grain rotations during uniaxial deformation of gradient nano-grained metals using crystal plasticity finite element simulations. Extr. Mech. Lett. 16, 41–48 (2017)

    Article  Google Scholar 

  5. Bobylev, S.V., Ovid’ko, I.A.: Stress-driven migration, convergence and splitting transformations of grain boundaries in nanomaterials. Acta Mater. 124, 333–342 (2017)

    Article  Google Scholar 

  6. Ovid’ko, I.A., Sheinerman, A.G.: Grain boundary sliding, triple junction disclinations and strain hardening in ultrafine-grained and nanocrystalline metals. Int. J. Plast. 96, 227–241 (2017)

    Article  Google Scholar 

  7. Miyazawa, N., Yamaoka, T., Hakamada, M., Mabuchi, M.: Atomistic study of inelastic deformation in aluminum grain boundary fractures. Philos. Mag. Lett. 97, 476–485 (2017)

    Article  Google Scholar 

  8. Quinn, D., Connolly, P., Howe, M., McHugh, P.: Simulation of void growth in WC-Co hardmetals using crystal plasticity theory. Int. J. Mech. Sci. 39, 173–183 (1995)

    Article  MATH  Google Scholar 

  9. Segurado, J., Llorca, J.: Discrete dislocation dynamics analysis of the effect of lattice orientation on void growth in single crystals. Int. J. Plast. 26, 806–819 (2010)

    Article  MATH  Google Scholar 

  10. Potirniche, G.P., Hearndon, J.L., Horstemeyer, M.F., Ling, X.W.: Lattice orientation effects on void growth and coalescence in fcc single crystals. Int. J. Plast. 22, 921–942 (2006)

    Article  MATH  Google Scholar 

  11. Liu, B., Zhang, X.M., Tang, J.G., Du, Y.X.: Simulation of void growth and coalescence behavior with 3D crystal plasticity theory. Comput. Mater. Sci. 40, 130–139 (2007)

    Article  Google Scholar 

  12. Lu, K., Lu, L., Suresh, S.: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009)

    Article  Google Scholar 

  13. Song, H.Y., Sun, Y.: Effect of coherent twin boundary and stacking fault on deformation behaviors of copper nanowires. Comput. Mater. Sci. 104, 46–51 (2015)

    Article  Google Scholar 

  14. Lubarda, V.A.: Image force on a straight dislocation emitted from a cylindrical void. Int. J. Solids Struct. 48, 648–660 (2011)

    Article  MATH  Google Scholar 

  15. Lubarda, V.A.: Emission of dislocations from nanovoids under combined loading. Int. J. Plast. 27, 181–200 (2011)

    Article  Google Scholar 

  16. Ding, J., Zhao, H.-N., Wang, L.-S., Huang, X., Wang, J., Song, K., Lu, S.-Q., Zeng, X.-G.: Influence of loading directions on dislocation slip mechanism of nanotwinned Ni with void defect at the twin boundary. Comp. Mater. Sci. 152, 1–11 (2018)

    Article  Google Scholar 

  17. Husser, E., Soyarslan, C., Bargmann, S.: Size affected dislocation activity in crystals: advanced surface and grain boundary conditions. Extreme Mech. Lett. 13, 36–41 (2017)

    Article  Google Scholar 

  18. Liu, Y.W., Fang, Q.H., Jiang, C.P.: A wedge disclination dipole interacting with a circular inclusion. Phys. Status Solidi A 203(3), 443–458 (2006)

    Article  Google Scholar 

  19. Song, H.P., Fang, Q.H., Liu, Y.W.: The solution of a wedge disclination dipole interacting with an annular inclusion and the force acting on the disclination dipole. Chin. Phys. B 17(12), 4592–4598 (2008)

    Article  Google Scholar 

  20. Kalehbasti, S.R., Gutkin, M.Y., Shodja, H.M.: Wedge disclinations in the shell of a core–shell nanowire within the surface/interface elasticity. Mech. Mater. 68, 45–63 (2014)

    Article  Google Scholar 

  21. Kolesnikova, A.L., Gutkin, MYu., Proskura, A.V., Morozov, N.F., Romanov, A.E.: Elastic fields of straight wedge disclinations axially piercing bodies with spherical free surfaces. Int. J. Solids Struct. 99, 82–96 (2016)

    Article  Google Scholar 

  22. Luo, J., Li, Z., Xiao, Z.: On the stress field and crack nucleation behavior of a disclinated nanowire with surface stress effects. Acta Mech. 225, 3187–3197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Hirth, J.P., Lothe, J.: Theory of Dislocations, 2nd edn, pp. 59–95. Wiley, NY (1982)

    Google Scholar 

  24. Li, J.C.M.: Some elastic properties of an edge dislocation wall. Acta Metall. 8, 563–574 (1960)

    Article  Google Scholar 

  25. Li, J.C.M.: Disclination model of high angle grain boundaries. Surf. Sci. 31, 12–26 (1972)

    Article  Google Scholar 

  26. Colin, J., Bonneville, J., Grilhé, J.: Dislocation-based description of the sliding of a free-surface emerging grain boundary. Acta Mech. 2298, 3215–3222 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Theory of Elasticity, vol. 7, pp. 27–30. Pergamon Press Ltd., Oxford (1970)

    Google Scholar 

  28. Dundurs, J., Mura, T.: Interaction between an edge dislocation and a circular inclusion. J. Mech. Phys. Solids 12, 177–189 (1964)

    Article  MathSciNet  Google Scholar 

  29. Peach, M., Köhler, J.S.: The forces exerted on dislocations and the stress fields produced by them. Phys. Rev. 80, 436–439 (1950)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme Colin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colin, J. Dislocation emission from a cylindrical circular void separating two disclination dipoles in a high-angle grain boundary. Acta Mech 230, 2645–2654 (2019). https://doi.org/10.1007/s00707-019-02424-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-019-02424-9

Navigation