Skip to main content
Log in

A mesoscopic numerical analysis for combustion reaction of multi-component PBX explosives

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A mesoscopic combustion reaction model of multi-component PBX explosives by using a coupled thermo-mechanical constitutive model is studied. Thereinto, based on the heat balance equation, the present temperature can be calculated; the changing physical state of different materials is described by establishing different equations of state, and based on specially appointed constitutive equations, the microcracks in PBXs are described. Furthermore, the concept of combustion reaction degree is established, which takes temperature as a criterion for changing physical state. The model is implemented within the framework of the material point method so that the different gradient in the governing differential equations could be discretized in a single computational domain and that continuous remeshing is not required with increasing reaction time. The proposed model-based simulation procedure is verified with the burn rate, the peak pressure, and temperature of PBX explosives under macroscopic scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gruau, C., Picart, D., Belmas, R., Bouton, E., Delmaire-Sizes, F., Sabatier, J., Trumel, H.: Ignition of a confined high explosive under low velocity impact. Int. J. Impact Eng. 36, 537–550 (2009)

    Article  Google Scholar 

  2. Yeager, D., Dattelbaum, A.M., Orler, E.B., Bahr, D.F., Dattelbaum, D.M.: Adhesive properties of some fluoropolymer binders with the insensitive explosive 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). J. Colloid Interface Sci. 352, 535–541 (1990)

    Article  Google Scholar 

  3. Wiegand, D.A., Nicolaides, S., Pinto, J.: Mechanical and thermomechanical properties of NC base propellants. J. Energ. Mater. 8, 442–461 (2010)

    Article  Google Scholar 

  4. Walley, S.M., Field, J.E., Greenaway, M.W.: Crystal sensitivities of energetic materials. Mater. Sci. Technol. 22, 402–413 (2006)

    Article  Google Scholar 

  5. Li, J.L., Fu, H., Tan, D.W., Lu, F.Y., Chen, R.: Fracture behavior investigation into a polymer-bonded explosive. Strain 48, 463–473 (2012)

    Article  Google Scholar 

  6. Terada, K., Kato, J., Hirayama, N., Inugai, T., Yamamoto, K.: A method of two-scale analysis with micro-macro decoupling scheme: application to hyperelastic composite materials. Comput. Mech. 52, 1199–1219 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Song, J.H., Wang, H.W., Belytschko, T.: A comparative study on finite element methods for dynamic fracture. Comput. Mech. 42, 239–250 (2008)

    Article  MATH  Google Scholar 

  8. Moes, N., Dolbow, J., Belytschko, T.: A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46, 131–150 (1999)

    Article  MATH  Google Scholar 

  9. Belytschko, T., Moes, N., Usui, S., Parimi, C.: Arbitrary discontinuities in finite elements. Int. J. Numer. Methods Eng. 50, 993–1013 (2001)

    Article  MATH  Google Scholar 

  10. Rabczuk, T., Bordas, S., Zi, G.: On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88, 1391–1411 (2010)

    Article  Google Scholar 

  11. Rabczuk, T., Belytschko, T.: Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61, 2316–2343 (2004)

    Article  MATH  Google Scholar 

  12. Rabczuk, T., Zi, G., Bordas, S., Nguyen-Xuan, H.: A simple and robust three-dimensional cracking-particle method without enrichment. Comput. Methods Appl. Mech. Eng. 199, 2437–2455 (2010)

    Article  MATH  Google Scholar 

  13. Rabczuk, T., Belytschko, T.: A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput. Methods Appl. Mech. Eng. 196, 2777–2799 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rabczuk, T., Belytschko, T., Xiao, S.P.: Stable particle methods based on Lagrangian kernels. Comput. Methods Appl. Mech. Eng. 193, 1035–1063 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ren, H.L., Zhuang, X.Y., Rabczuk, T.: Dual-horizon peridynamics: a stable solution to varying horizons. Comput. Methods Appl. Mech. Eng. 318, 762–782 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ren, H.L., Zhuang, X.Y., Cai, Y.C., Rabczuk, T.: Dual-horizon peridynamics. Int. J. Numer. Methods Eng. 108, 1451–1476 (2016)

    Article  MathSciNet  Google Scholar 

  17. Rabczuk, T., Areias, P.M.A., Belytschko, T.: A meshfree thin shell method for non-linear dynamic fracture. Int. J. Numer. Methods Eng. 72, 524–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rabczuk, T., Gracie, R., Song, J.H., Belytschko, T.: Immersed particle method for fluid-structure interaction. Int. J. Numer. Methods Eng. 81, 48–71 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Harlow, F.H.: The particle-in-cell computing method for fluid dynamics. Methods Comput. Phys. 3, 319–343 (1963)

    Google Scholar 

  20. Sulsky, D., Chen, Z., Schreyer, H.L.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118, 179–186 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sulsky, D., Zhou, S.J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)

    Article  MATH  Google Scholar 

  22. Hu, W., Chen, Z.: A multi-mesh MPM for simulating the meshing process of spur gears. Comput. Struct. 81, 1991–2002 (2003)

    Article  Google Scholar 

  23. Gan, Y., Chen, Z., Montgomery-Smith, S.: Improve material point method for simulating the zona failure response in piezo-assisted intracytoplasmic sperm injection. Comput. Model. Eng. Sci. 73, 45–75 (2011)

    MATH  Google Scholar 

  24. Ma, X., Zhang, D.Z., Giguere, P.T., Liu, C.: Axisymmetric computation of Taylor cylinder impacts of ductile and brittle materials using original and dual domain material point methods. Int. J. Impact Eng. 54, 96–104 (2013)

    Article  Google Scholar 

  25. Lian, Y.P., Zhang, X., Liu, Y.: Coupling of finite element method with material point method by local multi-mesh contact method. Comput. Methods Appl. Mech. Eng. 200, 3482–3494 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, P.F., Liu, Y., Zhang, X., Zhou, X., Ma, S., Zhao, Y.L.: Simulation of fragmentation with material point method based on Gurson model and random failure. Comput. Model. Eng. Sci. 85, 207–237 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Charlton, T.J., Coombs, W.M., Augarde, C.E.: iGIMP: an implicit generalised interpolation material point method for large deformations. Comput. Struct. 190, 108–125 (2017)

    Article  Google Scholar 

  28. Silling, S.A., Askari, E.: A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1535 (2005)

    Article  Google Scholar 

  29. Rastkara, S., Zahedib, M., Koroleva, I., Agarwala, A.: A meshfree approach for homogenization of mechanical properties of heterogeneous materials. Eng. Anal. Bound. Elem. 75, 79–88 (2017)

    Article  MathSciNet  Google Scholar 

  30. Farahania, B.V., Piresa, F.M.A., Moreirab, P.M.G.P., Belinhaab, J.: A meshless method in the non-local constitutive damage models. Proced. Struct. Integr. 1, 226–233 (2016)

    Article  Google Scholar 

  31. Zhou, S.J.: The numerical prediction of material failure based on material point method. Ph.D. thesis, University of New Mexico (1998)

  32. Nairn, J.A., Guilkey, J.E.: Axisymmetric form of the generalized interpolation material point method. Int. J. Numer. Methods Eng. 101, 127–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, S., Zhang, X., Qiu, X.M.: Comparison study of MPM and SPH in modeling hypervelocity impact problems. Int. J. Impact Eng. 36, 272–282 (2009)

    Article  Google Scholar 

  34. Andersen, S., Andersen, L.: Analysis of spatial interpolation in the material-point method. Comput. Struct. 88, 506–518 (2010)

    Article  MATH  Google Scholar 

  35. Ching, H.K., Batra, R.C.: Determination of crack tip fields in linear elastostatics by the meshless local Petrov–Galerkin (MLPG) method. Comput. Model. Eng. Sci. 2, 273–289 (2001)

    Google Scholar 

  36. Mason, M., Chen, K., Hu, P.G.: Material point method of modelling and simulation of reacting flow of oxygen. Int. J. Comput. Fluid Dyn. 28, 420–427 (2014)

    Article  MathSciNet  Google Scholar 

  37. Ma, J., Wang, D., Randolph, M.F.: A new contact algorithm in the material point method for geotechnical simulations. Int. J. Numer. Anal. Methods Geomech. 38, 1197–1210 (2014)

    Article  Google Scholar 

  38. Tan, H.L., Nairn, J.A.: Hierarchical, adaptive, material point method for dynamic energy release rate calculations. Comput. Methods Appl. Mech. Eng. 191, 2123–2137 (2002)

    Article  MATH  Google Scholar 

  39. Nairn, J.A.: Material point method calculations with explicit cracks. Comput. Model. Eng. Sci. 4, 649–663 (2003)

    MATH  Google Scholar 

  40. Guo, Y.J., Nairn, J.A.: Three-dimensional dynamic fracture analysis using the material point method. Comput. Model. Eng. Sci. 16, 141–155 (2006)

    Google Scholar 

  41. Guo, Y.J., Nairn, J.A.: Calculation of J-integral and stress intensity factors using the material point method. Comput. Model. Eng. Sci. 6, 295–308 (2004)

    MATH  Google Scholar 

  42. Bardenhagen, S.G., Nairn, J.A., Lu, H.B.: Simulation of dynamic fracture with the material point method using a mixed J-integral and cohesive law approach. Int. J. Fract. 170, 49–66 (2011)

    Article  MATH  Google Scholar 

  43. Chen, Z., Gan, Y., Chen, J.K.: A coupled thermo-mechanical model for simulating the material failure evolution due to localized heating. Comput. Model. Eng. Sci. 26, 123–137 (2008)

    Google Scholar 

  44. Schreyer, H.L., Sulsky, D.L., Zhou, S.J.: Modeling delamination as a strong discontinuity with the material point method. Comput. Methods Appl. Mech. Eng. 191, 2483–2507 (2002)

    Article  MATH  Google Scholar 

  45. Chen, Z., Hu, W., Shen, L., Xin, X., Brannon, R.: An evaluation of the MPM for simulating dynamic failure with damage diffusion. Eng. Fract. Mech. 69, 1873–1890 (2002)

    Article  Google Scholar 

  46. Chen, Z., Feng, R., Xin, X., Shen, L.: A computational model for impact failure with shear-induced dilatancy. Int. J. Numer. Methods Eng. 56, 1979–1997 (2003)

    Article  MATH  Google Scholar 

  47. Addessio, F.L., Johnson, J.N.: A constitutive model for the dynamic response of brittle materials. J. Appl. Phys. 67, 3275–3286 (1990)

    Article  Google Scholar 

  48. Bennett, J.G., Haberman, K.S., Johnson, J.N., Asay, B.W., Henson, B.F.: A constitutive model for the non-shock ignition and mechanical response of high explosives. J. Mech. Phys. Solids 46, 2303–2322 (1998)

    Article  MATH  Google Scholar 

  49. Dienes, J.K.: A unified theory of flow, hot spots, and fragmentation with an application to explosive sensitivity. High-Press. Shock Compress. Solids II, 366–398 (1996)

    Article  MATH  Google Scholar 

  50. Sellam, M., Natarajan, S., Kannan, K.: Smoothed polygonal finite element method for generalized elastic solids subjected to torsion. Comput. Struct. 188, 32–34 (2017)

    Article  Google Scholar 

  51. Phuongab, N.T.V., van Tolab, A.F., Elkadib, A.S.K., Roheb, A.: Numerical investigation of pile installation effects in sand using material point method. Comput. Struct. 73, 58–71 (2016)

    Google Scholar 

  52. Charlton, T.J., Coombs, W.M., Augarde, C.E.: Gradient elasto-plasticity with the generalised interpolation material point method. Proced. Eng. 175, 110–115 (2017)

    Article  Google Scholar 

  53. Nairn, J.A.: Modeling imperfect interfaces in the material point method using multimaterial methods. Comput. Model. Eng. Sci. 92, 271–299 (2013)

    MathSciNet  MATH  Google Scholar 

  54. Serkan, D., Bora, Y., Serra, T.: Computational methods for inclined cracks in orthotropic functionally graded materials under thermal stresses. J. Therm. Stresses 36, 1001–1026 (2013)

    Article  Google Scholar 

  55. Rabczuk, T., Eibl, J.: Simulation of high velocity concrete fragmentation using SPH/MLSPH. Int. J. Numer. Methods Eng. 56, 1421–1444 (2003)

    Article  MATH  Google Scholar 

  56. Rabczuk, T., Eibl, J.: Modelling dynamic failure of concrete with meshfree methods. Int. J. Impact Eng. 32, 1878–1897 (2006)

    Article  Google Scholar 

  57. AUTODYN. Theory Manual Revision 4.3. USA: Century Dynamics, Incorporated, 145–152 (2005)

  58. Wu, X.: Detonation performance of condensed explosives computed with the VLW EOS. In: Proceedings of the Eighth Symposium (International) on Detonation. Albuquerque Office of Naval Research, 796–804 (1985)

  59. Grebenkin, K.F.: Comparative analysis of physical mechanisms of detonation initiation in HMX and in a low-sensitive explosive (TATB). Combust. Explos. Shock Waves 45, 78–87 (2009)

    Article  Google Scholar 

  60. Bai, Z.L., Duan, Z.P., Jing, L., Liu, Y.R., Ou, Z.C., Huang, F.L.: Experimental research on initiation of insensitive high energy plastic bonded explosives by flyer impact. Acta Armamentarii 37, 1464–1468 (2016). (in Chinese)

    Google Scholar 

  61. Son, S.F., Berghout, H.L., Bolme, C.A., Chavez, D.E., Naud, D., Hiskey, M.A.: Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc. Combust. Inst. 28(1), 919–924 (2000)

    Article  Google Scholar 

  62. Kubota, N.: Role of additives in combustion waves and effect on stable combustion limit of double-base propellants. Propellants Explos. Pyrotech. 3(6), 163–168 (1978)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingxin Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Ma, J., Shi, Y. et al. A mesoscopic numerical analysis for combustion reaction of multi-component PBX explosives. Acta Mech 229, 2267–2286 (2018). https://doi.org/10.1007/s00707-017-2098-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-017-2098-7

Navigation