Skip to main content
Log in

Thermal buckling of rotating pre-twisted functionally graded microbeams with temperature-dependent material properties

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

As a first endeavor, the thermal buckling of rotating pre-twisted functionally graded (FG) microbeams with temperature-dependent material properties is studied based on the modified strain gradient theory in conjunction with the first-order shear deformation theory of beams. The adjacent equilibrium criterion and Chebyshev–Ritz method are employed to derive the nonlinear algebraic eigenvalue equations governing the thermal buckling behavior of the microbeams, which are solved iteratively. The fast rate of convergence and accuracy of the method are numerically demonstrated. Then, the effects of the twist angle, rate of twist angle (as an important geometrical design parameter), material length scale parameter, material gradient index and angular velocity on the thermal load-bearing capacity of rotating pre-twisted FG microbeams under different boundary conditions are studied. It is shown that by increasing the hub radius, the angular velocity and the length scale parameter, the thermal buckling load increases, but an increase of the material gradient index reduces the critical thermal buckling load. In addition, the formulation can be easily degenerated to those of large-scale rotating pre-twisted FG beams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gammel, P., Fischer, G., Bouchaud, J.: RF MEMS and NEMS technology, devices, and applications. Bell Labs Tech. J. 10, 29–59 (2005)

    Article  Google Scholar 

  2. London, A.P., Epstein, A.H., Kerrebrock, J.L.: High-pressure bipropellant microrocket engine. J. Propul. Power 17, 780–787 (2001)

    Article  Google Scholar 

  3. Fréchette, L.G., Jacobson, S.A., Breuer, K.S., Ehrich, F.F., Ghodssi, R., Khanna, R., Wong, C.W., Zhang, X., Schmidt, M.A., Epstein, A.H.: High-speed microfabricated silicon turbomachinery and fluid film bearings. J. Microelectromech. S. 14, 141–152 (2005)

    Article  Google Scholar 

  4. Andrés, L.S.: Microturbomachinary applications. Turbomachinery Laboratory, Texas A&M University Mechanical Engineering Department (2014). http://rotorlab.tamu.edu

  5. Yamashita, F., Menjo, N., Nishimura, S., Kobayashi, O., Itoh, M., Terada, K., Nakano, M., Fukunaga, H., Ishiyama, K.: Multi-polarly micro rotor prepared from isotropic nano-crystalline films with self-bonding layer. J. Phys. Conf. Ser. 266, 012051 (2011)

    Article  Google Scholar 

  6. Zhang, W.M., Meng, G.: Stability, bifurcation and chaos of a high-speed rub-impact rotor system in MEMS. Sensor Actuat. A Phys. 127, 163–178 (2006)

    Article  Google Scholar 

  7. Wajchman, D., Liu, K.C., Friend, J., Yeo, L.: An ultrasonic piezoelectric motor utilizing axial-torsional coupling in a pretwisted non-circular cross sectioned prismatic beam. IEEE T. Ultrason. Ferr. 55, 832–840 (2008)

    Article  Google Scholar 

  8. Watson, B., Friend, J., Yeo, L.: Micromotor of less than 1 \(\text{ mm }^3\) volume for in vivo medical procedures. ICQNM 09, 81–85 (2009)

    Google Scholar 

  9. Farahmand, H., Ahmadi, A.R., Arabnejad, S.: Thermal buckling analysis of rectangular microplates using higher continuity p-version finite element method. Thin Wall. Struct. 49, 1584–1591 (2011)

    Article  Google Scholar 

  10. Ke, L.L., Wang, Y.S., Wang, Z.D.: Thermal effect on free vibration and buckling of size-dependent microbeams. Physica E 43, 1387–1393 (2011)

    Article  Google Scholar 

  11. Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V., Darabi, M.A.: Thermal postbuckling behavior of size-dependent functionally graded Timoshenko microbeams. Int. J. NonLinear Mech 50, 127–135 (2013)

    Article  Google Scholar 

  12. Nateghi, A., Salamat-Talab, M.: Thermal effect on size dependent behavior of functionally graded microbeams based on modified couple stress theory. Compos. Struct. 96, 97–110 (2013)

    Article  Google Scholar 

  13. Mohammadi, H., Mahzoon, M.: Thermal effects on postbuckling of nonlinear microbeams based on the modified strain gradient theory. Compos. Struct. 106, 764–776 (2013)

    Article  Google Scholar 

  14. Akgöz, B., Civalek, Ö.: Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 85, 90–104 (2014)

    Article  Google Scholar 

  15. Shafiei, N., Mousavi, A.R., Ghadiri, M.: Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Compos. Struct. 149, 157–169 (2016)

    Article  Google Scholar 

  16. Ghadiri, M., Shafiei, N.: Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions. Acta Astronaut 121, 221–240 (2016)

    Article  Google Scholar 

  17. Shafiei, N., Kazemi, M., Ghadiri, M.: Comparison of modeling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams. Physica E 83, 74–87 (2016)

    Article  Google Scholar 

  18. Shafiei, N., Kazemi, M., Ghadiri, M.: On size-dependent vibration of rotary axially functionally graded microbeam. Int. J. Eng. Sci. 101, 29–44 (2016)

    Article  Google Scholar 

  19. Ilkhani, M.R., Hosseini-Hashemi, S.H.: Size dependent vibro-buckling of rotating beam based on modified couple stress theory. Compos. Struct. 143, 75–83 (2016)

    Article  Google Scholar 

  20. Suresh, S., Mortensen, A.: Fundamentals of functionally graded materials: processing and thermomechanical behavior of graded metals and metal-ceramic composites. IOM Communications Ltd 42, 85–116 (1997)

    Google Scholar 

  21. Fu, Y.Q., Du, H.J., Huang, W.M., Zhang, S., Hu, M.: TiNi-based thin films in MEMS applications: a review. Sensor Actuat. A Phys. 112, 395–408 (2004)

    Article  Google Scholar 

  22. Lü, C.F., Lim, C.W., Chen, W.Q.: Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int. J. Solids Struct. 46, 1176–1185 (2009)

    Article  MATH  Google Scholar 

  23. Askes, H., Aifantis, E.C.: Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int. J. Solids Struct. 48, 1962–1990 (2011)

    Article  Google Scholar 

  24. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  25. Toupin, R.A.: Elastic materials with couple-stress. Arch. Ration. Mech. An. 11, 385–414 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  26. Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  27. Mindlin, R.D.: Micro-structure in linear elasticity. Arch. Ration. Mech. An. 16, 51–78 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mindlin, R.D.: Second gradient of strain and surface tension in linear elasticity. Int. J. Solids Struct. 1, 417–438 (1965)

    Article  Google Scholar 

  29. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)

    Article  MATH  Google Scholar 

  30. Akgöz, B., Civalek, Ö.: Strain gradient elasticity and modified couple stress models for buckling analysis of axially loaded micro-scaled beams. Int. J. Eng. Sci. 49, 1268–1280 (2011)

    Article  MathSciNet  Google Scholar 

  31. Mustapha, K.B., Zhong, Z.W.: Wave propagation characteristics of a twisted micro scale beam. Int. J. Eng. Sci. 53, 46–57 (2012)

    Article  MathSciNet  Google Scholar 

  32. Şimşek, M., Reddy, J.N.: A unified higher order beam theory for buckling of a functionally graded microbeam embedded in elastic medium using modified couple stress theory. Compos. Struct. 101, 47–58 (2013)

    Article  Google Scholar 

  33. Akgöz, B., Civalek, Ö.: Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Struct. Eng. Mech. 48, 195–205 (2013)

    Article  MATH  Google Scholar 

  34. Sahmani, S., Ansari, R.: Size-dependent buckling analysis of functionally graded third-order shear deformable microbeams including thermal environment effect. Appl. Math. Model. 37, 9499–9515 (2013)

    Article  MathSciNet  Google Scholar 

  35. Akgöz, B., Civalek, Ö.: A new trigonometric beam model for buckling of strain gradient microbeams. Int. J. Mech. Sci. 81, 88–94 (2014)

    Article  Google Scholar 

  36. Mohammad-Abadi, M., Daneshmehr, A.R.: Size dependent buckling analysis of microbeams based on modified couple stress theory with high order theories and general boundary conditions. Int. J. Eng. Sci. 74, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  37. Mohammad Abadi, M., Daneshmehr, A.R.: An investigation of modified couple stress theory in buckling analysis of micro composite laminated Euler-Bernoulli and Timoshenko beams. Int. J. Eng. Sci. 75, 40–53 (2014)

    Article  MathSciNet  Google Scholar 

  38. Taati, E., Molaei Najafabadi, M., Basirat Tabrizi, H.: Size-dependent generalized thermoelasticity model for Timoshenko microbeams. Acta Mech. 225, 1823–1842 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mohammadabadi, M., Daneshmehr, A.R., Homayounfard, M.: Size-dependent thermal buckling analysis of micro composite laminated beams using modified couple stress theory. Int. J. Eng. Sci. 92, 47–62 (2015)

    Article  MathSciNet  Google Scholar 

  40. Akgöz, B., Civalek, Ö.: A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory. Acta Mech. 226, 2277–2294 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Xie, X., Zheng, H., Yang, H.: Indirect radial basis function approach for bending, free vibration and buckling analyses of functionally graded microbeams. Compos. Struct. 131, 606–615 (2015)

    Article  Google Scholar 

  42. Ghorbani Shenas, A., Malekzadeh, P.: Free vibration of functionally graded quadrilateral microplates in thermal environment. Thin Wall Struct. 106, 294–315 (2016)

    Article  Google Scholar 

  43. Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K., Liu, W.Q.: 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method. Int. J. Mech. Sci. 48, 1481–1493 (2006)

    Article  MATH  Google Scholar 

  44. Malekzadeh, P., Bahranifard, F., Ziaee, S.: Three-dimensional free vibration analysis of functionally graded cylindrical panels with cut-out using Chebyshev-Ritz method. Compos. Struct. 105, 1–13 (2013)

    Article  Google Scholar 

  45. Shen, H.S., Wang, Z.X.: Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates. Compos. Struct. 94, 2197–2208 (2012)

    Article  Google Scholar 

  46. Kim, Y.W.: Temperature dependent vibration analysis of functionally graded rectangular plates. J. Sound Vib. 284, 531–549 (2005)

    Article  Google Scholar 

  47. Brush, D.O., Almroth, B.O.: Buckling of Bars, Plates, and Shells. McGraw-Hill, New York (1975)

    MATH  Google Scholar 

  48. Akgöz, B., Civalek, Ö.: Shear deformation beam models for functionally graded microbeams with new shear correction factors. Compos. Struct. 112, 214–225 (2014)

    Article  Google Scholar 

  49. Akgöz, B., Civalek, Ö.: A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 99, 10–20 (2015)

    Article  MATH  Google Scholar 

  50. Darijani, H., Shahdadi, A.H.: A new shear deformation model with modified couple stress theory for microplates. Acta Mech. 226, 2773–2788 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  51. Leung, A.Y.T.: Dynamics and buckling of thin pre-twisted beams under axial load and torque. Int. J. Struct. Stab. Dyn. 10, 957–981 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Malekzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbani Shenas, A., Malekzadeh, P. & Ziaee, S. Thermal buckling of rotating pre-twisted functionally graded microbeams with temperature-dependent material properties. Acta Mech 228, 1115–1133 (2017). https://doi.org/10.1007/s00707-016-1759-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-016-1759-2

Navigation