Skip to main content
Log in

An efficient and green protocol for the synthesis of 1-hydroxy-2-arylimidazole-3-oxide derivatives under solvent-free condition using inexpensive copper borate (CuB4O7) catalyst

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A highly efficient, simple, and environmental friendly protocol for the synthesis of 1-hydroxy-2-arylimidazole-3-oxide derivatives was devised using inexpensive and unconventional copper borate (CuB4O7) catalyst under solvent-free condition. The documented method features a wide range of chemical substrate scope. All the products formed were characterized by different analytical and spectroscopic techniques.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the analytical and spectroscopic data for the synthesized compounds have been embeded in the supplimentary information file.

References

  1. Brahmbhatt H, Molnar M, Pavić V (2018) Karbala Int J Mod Sci 4:200

    Article  Google Scholar 

  2. Verma A, Joshi S, Singh D (2013) J Chem 2013:329412

    Google Scholar 

  3. Manocha P, Wakode SR, Kaur A, Kumar H (2016) Int J Pharm SciRes 1:12

    Google Scholar 

  4. Reyes-Arellano A, Gómez-García O, Torres-Jaramillo (2016) J Med Chem 6:561

  5. Romero DH, Torres Heredia VH, García-Barradas O, López MEM, Pavón ES (2014) J Chem Biochem 2:45

    Article  Google Scholar 

  6. Anand K, Wakode S (2017) Int J Chem Stud 5:350

    CAS  Google Scholar 

  7. Verma BK, Kapoor S, Kumar U, Pandey S, Arya P (2017) Ind J Pharm BioRes 5:1

    Google Scholar 

  8. Bhade MW, Rajput PR (2016) Int J Appl Pure Sci Agric 2:80

    Google Scholar 

  9. Katikireddy R, Kakkerla R, Krishna MPSM, Durgaiah G, Reddy YN, Satyanarayana M (2019) Heterocycl Commun 25:27

    Article  CAS  Google Scholar 

  10. Goyal A, Singh J, Pathak DP (2013) J Pharm Technol Res Manag 1:69

    Article  Google Scholar 

  11. MacFarlane DR, Seddon KR (2007) Aust J Chem 60:3

    Article  CAS  Google Scholar 

  12. Ceruelos AH, Romero-Quezada LC, Ledezma JCR, Contreras LL (2019) Eur Rev Med Pharmacol Sci 23:397

    Google Scholar 

  13. Laus G, Sladlwieser J, Klötzer W (1989) Synthesis 1989:773

    Article  Google Scholar 

  14. Hayes K (1975) J Heterocycl Chem 11:615

    Article  Google Scholar 

  15. Albini A, Pietra S (1991) Heterocyclic N-oxides. CRC Press, Boca Raton

    Google Scholar 

  16. Albini A (1993) Synthesis 1993:263

    Article  Google Scholar 

  17. Wang Y, Zhang L (2015) Synthesis 47:289

    Article  CAS  Google Scholar 

  18. Quagliano JV, Fujita J, Franz G, Phillips DJ, Walmsley JA, Tyree SY (1961) J Am Chem Soc 83:3770

    Article  CAS  Google Scholar 

  19. da Silva RB, Loback VB, Salomão K, de Castro SL, Wardell JL, Wardell SMSV, Costa TEMM, Penido C, de Oliveira HMDGM, Carvalho SA, da Silva EF, Fraga CAM (2013) Molecules 18:3445

    Article  PubMed  PubMed Central  Google Scholar 

  20. Witschel M (2009) Bioorg Med Chem 17:4221

    Article  CAS  PubMed  Google Scholar 

  21. Stensbøl TB, Uhlmann P, Morel S, Eriksen BL, Felding J, Kromann H, Hermit MB, Greenwood JR, Braüner-Osborne H, Madsen U, Junager F, Krogsgaard-Larsen P, Begtrup M, Vedsø P (2002) J Med Chem 45:19

    Article  PubMed  Google Scholar 

  22. Richardson ML, Croughton KA, Matthews CS, Stevens MFG (2004) J Med Chem 47:4105

    Article  CAS  PubMed  Google Scholar 

  23. Kim OK, Garrity-Ryan LK, Bartlett VJ, Grier MC, Verma AK, Medjanis G, Donatelli JE, Macone AB, Tanaka SK, Levy SB, Alekshun MN (2009) J Med Chem 52:5626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mloston G, Celeda M, Jasinski M, Urbaniak K, Boratynski PJ, Schreiner PR, Heimgartner H (2019) Molecules 24:4398

    Article  PubMed  PubMed Central  Google Scholar 

  25. Amitina SA, Tikhonov AY, Grigor’Ev IA, Gatilov YV, Selivanov BA (2009) Chem Heterocycl Comp 45:691

  26. Edward TG, Fisher C (2018) Antiviral Res 152:68

    Article  Google Scholar 

  27. Nikitina PA, Kuzmina LG, Perevalov VP, Tkach II (2013) Tetrahedron 69:3249

    Article  CAS  Google Scholar 

  28. Nikitina PA, Peregudov AS, Koldaeva TY, Kuzmina LG, Adiulin EI, Tkach II, Perevalov VP (2015) Tetrahedron 71:5217

    Article  CAS  Google Scholar 

  29. Chen ME, Mo LP, Cui ZS, Zhang ZH (2018) Curr Opin Green Sustain Chem 15:27

    Article  Google Scholar 

  30. Zhang M, Liu YH, Shang ZR, Hu HC, Zhang ZH (2017) Catal Commun 88:39

    Article  CAS  Google Scholar 

  31. Zhang WH, Chen MN, Hao Y, Jiang X, Zhou L, Zhang ZH (2019) J Mol Liq 278:124

    Article  CAS  Google Scholar 

  32. Zeng M, Xue Y, Qin Y, Peng F, Li Q, Zeng MH (2022) Chin Chem Lett 33:4891

    Article  CAS  Google Scholar 

  33. Zhang M, Chen MN, Zhang ZH (2019) Synth Catal 361:1

    Article  Google Scholar 

  34. Pradhan K, Tiwary BK, Hossain M, Chakraborty R, Nanda AK (2016) RSC Adv 6:10743

    Article  CAS  Google Scholar 

  35. Bartz S, Blumenröder B, Kern A, Fleckenstein J, Frohnapfel S, Schatz J, Wagner A (2009) Z Naturforsch 64b:629

  36. Chua SO, Cook MJ, Katritzky AR (1971) J Chem Soc B 1971:2350

  37. Schilf W, Stefaniak L, Witanowski M, Webb GA (1986) J Mol Struct 140:311

    Article  CAS  Google Scholar 

  38. Boiani M, Cerecetto H, Gonzalez M, Piro OE, Castellano EE (2004) J Phys Chem A 108:11241

    Article  CAS  Google Scholar 

  39. Wright JB (1964) J Org Chem 29:1620

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the research facilities available at the incubation center of St. Joseph’s College, Darjeeling, and University of North Bengal, Darjeeling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhiraj Brahman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chettri, S., Tamang, S., Sinha, B. et al. An efficient and green protocol for the synthesis of 1-hydroxy-2-arylimidazole-3-oxide derivatives under solvent-free condition using inexpensive copper borate (CuB4O7) catalyst. Monatsh Chem 154, 635–643 (2023). https://doi.org/10.1007/s00706-023-03068-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03068-1

Keywords

Navigation