Skip to main content

Advertisement

Log in

Polyethylenimine-grafted graphene oxide: a versatile photothermal nanocomposite for catalysis and carbon dioxide capture-and-release under simulated and natural sunlight

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Application of solar thermal energy relies on photothermal effect is one of the emerging topics in green chemical research. Polyethylenimine-grafted graphene oxide (PEI@GO) can harvest thermal energy directly from visible light and be employed as photothermal catalyst in model reactions. Furthermore, this nanocomposite used in carbon dioxide capture-and-release processes relied on photothermal regeneration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The spectroscopic data of the products are available in the Supplementary Information.

References

  1. Lewis NS, Nocera DG (2006) Proc Natl Acad Sci USA 103:15729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jung HS, Verwilst P, Sharma A, Shin J, Sessler JL, Kim JS (2018) Chem Soc Rev 47:2280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lal S, Clare SE, Halas NJ (2008) Acc Chem Res 41:1842

    Article  CAS  PubMed  Google Scholar 

  4. Zhu L, Gao M, Peh CKN, Ho GW (2018) Mater Horiz 5:323

    Article  CAS  Google Scholar 

  5. Sun X, Jiang S, Huang H, Li H, Jia B, Ma T (2022) Angew Chem Int Ed 61:e202204880

    CAS  Google Scholar 

  6. Du S, Bian X, Zhao Y, Shi R, Zhang T (2022) Chem Res Chin Univ 38:723

    Article  CAS  Google Scholar 

  7. Cheng P, Wang D, Schaaf P (2022) Adv Sustain Syst 6:2200115

    Article  CAS  Google Scholar 

  8. Mulvaney P (1996) Langmuir 12:788

    Article  CAS  Google Scholar 

  9. Baffou G, Quidant R (2014) Chem Soc Rev 43:3898

    Article  CAS  PubMed  Google Scholar 

  10. Mehta P, Barboun P, Go DB, Hicks JC, Schneider WF (2019) ACS Energy Lett 4:1115

    Article  CAS  Google Scholar 

  11. Wang F, Li C, Chen H, Jiang R, Sun L, Li Q, Wang J, Yu JC, Yan C (2013) J Am Chem Soc 135:5588

    Article  CAS  PubMed  Google Scholar 

  12. Long R, Rao Z, Mao K, Li Y, Zhang C, Liu Q, Wang C, Li Z, Wu X, Xiong Y (2015) Angew Chem Int Ed 54:2425

    Article  CAS  Google Scholar 

  13. Jia J, O’Brien PG, He L, Qiao Q, Fei T, Reyes LM, Burrow TE, Dong Y, Liao K, Varela M, Pennycook SJ, Hmadeh M, Helmy AS, Kherani NP, Perovic DD, Ozin GA (2016) Adv Sci 3:1600189

    Article  Google Scholar 

  14. Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) J Am Chem Soc 133:6823

    Article  Google Scholar 

  15. Li Z, Lei H, Kan A, Xie H, Yu W (2021) Energy 216:119262

    Article  CAS  Google Scholar 

  16. Yeh C, Wu P, Chen D (2014) Mater Lett 136:274

    Article  CAS  Google Scholar 

  17. Dai Y, Zhu M, Wang X, Wu Y, Huang C, Fu W, Meng X, Sun Y (2018) Nanotechnology 29:245703

    Article  PubMed  Google Scholar 

  18. Zhang Y, Guo H, Weng W, Fu M (2017) Phys Chem Chem Phys 19:31389

    Article  CAS  PubMed  Google Scholar 

  19. Shin HH, Yang W, Lim D (2019) Carbon 143:362

    Article  CAS  Google Scholar 

  20. Xiao Y, Liu J, Wang H, Yang C, Cheng H, Deng Y, Cheng L, Fang Y (2020) Mol Catal 493:111103

    Article  CAS  Google Scholar 

  21. Wang J, Zhang G, Zhang P (2018) Appl Catal B Environ 239:77

    Article  CAS  Google Scholar 

  22. Nguyen DT, Truong R, Lee R, Goetz SA, Esser-Kahn AP (2014) Energy Environ Sci 7:2603

    Article  CAS  Google Scholar 

  23. Wang Q, Luo J, Zhong Z, Borgna A (2011) Energy Environ Sci 4:42

    Article  CAS  Google Scholar 

  24. Gunathilake C, Jaroniec M (2015) J Mater Chem A 3:2707

    Article  CAS  Google Scholar 

  25. Gunathilake C, Manchanda AS, Ghimire P, Kruk M, Jaroniec M (2016) Environ Sci Nano 3:806

    Article  CAS  Google Scholar 

  26. Gunathilake C, Dassanayake RS, Kalpage CS, Jaroniec M (2018) Materials 11:2301

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gunathilake C, Dassanayake RS, Fernando CAN, Jaroniec M (2022) J Compos Sci 6:168

    Article  CAS  Google Scholar 

  28. Hummers WS, Offeman RE (1958) J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  29. Chen W, Yan L, Bangal PR (2010) J Phys Chem C 114:19885

    Article  CAS  Google Scholar 

  30. Paredes JI, Villar-Rodil S, Martinez-Alonso A, Tascon JMD (2008) Langmuir 24:10560

    Article  CAS  PubMed  Google Scholar 

  31. Shin G, Rhee K, Park S (2016) Int J Hydrogen Energy 41:14351

    Article  CAS  Google Scholar 

  32. Blanton TN, Majumdar D (2013) Powder Diffr 28:68

    Article  CAS  Google Scholar 

  33. Aboutalebi SH, Chidembo AT, Salari M, Konstantinov K, Wexler D, Liu HK, Dou SX (2011) Energy Environ Sci 4:1855

    Article  CAS  Google Scholar 

  34. Xu Q, Shen Y, Zhang Y, Shao X (2019) Bioorg Med Chem Lett 29:2398

    Article  CAS  PubMed  Google Scholar 

  35. Yuan C, Chen W, Yan L (2012) J Mater Chem 22:7456

    Article  CAS  Google Scholar 

  36. Wang F, Cheng Z, Tan J, Yuan Y, Yong S, Liu L (2017) Renew Sustain Energy Rev 79:1314

    Article  Google Scholar 

  37. Matsuda K, Buckingham SD, Kleier D, Sattelle DB (2001) Trends Pharmacol Sci 22:573

    Article  CAS  PubMed  Google Scholar 

  38. Zhang W, Yang X, Chen W, Xu X, Li L, Zhai H, Li Z (2010) J Agric Food Chem 58:2741

    Article  CAS  PubMed  Google Scholar 

  39. Li Z, Qian X, Yang X, Xu X, Tao L, Song G (2010) Heterocyclic nitrogenous compounds with insecticidal activity and their preparation, agrochemical compositions and use in the protection of crops and animals. Patent WO 2010075760A1, Jul 8, 2010; (2010) Chem Abstr 153:116215

  40. Huang A, Feng B (2018) Int J Hydrogen Energy 43:2224

    Article  CAS  Google Scholar 

  41. Fang Q, Wang H (2020) Mater Res Express 7:035026

    Article  CAS  Google Scholar 

  42. Niu M, Yang H, Zhang X, Wang Y, Tang A (2016) ACS Appl Mater Interfaces 8:17312

    Article  CAS  PubMed  Google Scholar 

  43. Xu X, Song C, Miller BG, Scaroni AW (2017) Ind Eng Chem Res 44:8113

    Article  Google Scholar 

  44. Shoi SC, Drese JH, Jones CW (2010) Chemsuschem 2:796

    Google Scholar 

  45. Marcano DC, Kosynkin DV, Berlin JM (2010) ACS Nano 4:4806

    Article  CAS  PubMed  Google Scholar 

  46. Bakhtiari K, Haghighi M, Derikvand F (2006) Lett Org Chem 3:297

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key Research and Development Plan (SQ2017ZY060054) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Peng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 340 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Zhang, Y. & Peng, Y. Polyethylenimine-grafted graphene oxide: a versatile photothermal nanocomposite for catalysis and carbon dioxide capture-and-release under simulated and natural sunlight. Monatsh Chem 154, 367–377 (2023). https://doi.org/10.1007/s00706-023-03055-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-023-03055-6

Keywords

Navigation