Skip to main content
Log in

Evaluation of scandium sorption using modified Amberlite XAD-4 resin

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Amberlite XAD-4 resin, impregnated with di(2-ethylhexyl)phosphoric acid (D2EHPA), was prepared as the adsorbent for this study. The loading capacity for the resin is 11.5 g of D2EHPA per gram of resin. Several parameters (adsorbent dosage, time, pH, initial metal concentration) were evaluated to investigate the adsorption capacity of the impregnated resin for Sc3+ from aqueous solutions. A maximum capacity of 0.035 mg Sc3+/g of resin was achieved. The physical interaction of D2EHPA with the Amberlite XAD-4 resin was demonstrated using FT-IR. The adsorption data have been shown to fit well into the Langmuir isotherm. The pseudo-second-order model suitably describes the adsorption kinetics data, with a good correlation between the theoretical and experimental adsorption capacity values.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li G, Ye Q, Deng B, Luo J, Rao M, Peng Z, Jiang T (2018) Hydrometallurgy 176:62

    Article  CAS  Google Scholar 

  2. Dehabadi M, Legin E, Legin A, Yaghmaei S, Nechaev A, Babain V, Kirsanov D (2021) Sens Actuators, B Chem 348:130699

    Article  CAS  Google Scholar 

  3. Junior AB, Espinosa DCR, Vaughan J, Tenório JAS (2021) Miner Eng 172:107148

    Article  Google Scholar 

  4. Jeong D, Kim J, Kwon O, Lim C, Sengodan S, Shin J, Kim G (2018) Appl Sci 8:2217

    Article  CAS  Google Scholar 

  5. Greb L (2018) Chem Eur J 24:17881

    Article  CAS  PubMed  Google Scholar 

  6. Giret S, Hu Y, Masoumifard N, Boulanger JF, Juère E, Kleitz F, Larivière D (2018) ACS Appl Mater Interf 10:448

    Article  CAS  Google Scholar 

  7. Sharaf M, Yoshida W, Kubota F, Goto M (2019) J Chem Eng Jpn 52:49

    Article  CAS  Google Scholar 

  8. Zhang N, Li HX, Liu XM (2016) Rare Met 35:887

    Article  CAS  Google Scholar 

  9. Dong Z, Deblonde G, Middleton A, Hu D, Dohnalkova A, Kovarik L, Qafoku O, Shutthanandan V, Jin H, Hsu-Kim H, Theaker N (2021) Environ Sci Technol 55:6320

    Article  CAS  PubMed  Google Scholar 

  10. Shi C, Jing Y, Xiao J, Wang X, Yao Y, Jia Y (2017) Sep Purif Technol 172:473

    Article  CAS  Google Scholar 

  11. Van Nguyen N, Iizuka A, Shibata E, Nakamura T (2016) Hydrometallurgy 165:51

    Article  Google Scholar 

  12. Nikolaychuk PA (2016) Reg Geosyst 37:70

    Google Scholar 

  13. Kumar S, Jain S (2013) J Chem 2013:957647

    Google Scholar 

  14. Hajmohammadi H, Jafari AH, Nasab ME (2020) Trans Nonferrous Met Soc China 30:3103

    Article  CAS  Google Scholar 

  15. Zhu X, Li W, Tang S, Zeng M, Bai P, Chen L (2017) Chemosphere 175:365

    Article  CAS  PubMed  Google Scholar 

  16. Makanyire T, Sanchez-Segado S, Jha A (2016) Adv Manufact 4:33

    Article  CAS  Google Scholar 

  17. Batra S, Awasthi A, Iqbal M, Datta D (2022) Rev Chem Eng 38:209

    Article  CAS  Google Scholar 

  18. Cortina JL, Warshawsky A (2021). In: Marinsky JA, Marcus J (eds) Ion exchange and solvent extraction, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  19. Surya AKGV, Vithya J, Rajarajan S, Kumar R (2021) Radiochim Acta 109:215

    Article  Google Scholar 

  20. Kalal HS, Khanchi AR, Nejatlabbaf M, Almasian MR, Saberyan K, Taghiof M (2017) Adv Environ Res 6:301

    Google Scholar 

  21. Bao S, Tang Y, Zhang Y, Liang L (2016) Chem Eng Technol 39:1377

    Article  CAS  Google Scholar 

  22. Tetgure SR, Choudhary BC, Garole DJ, Borse AU, Sawant AD, Prasad S (2017) Microchem J 130:442

    Article  CAS  Google Scholar 

  23. Tang Y, Bao S, Zhang Y, Liang L (2017) React Funct Polym 113:50

    Article  CAS  Google Scholar 

  24. Chen JH, Chang YH, Hsu KC, Lin JC (2021) Chem Eng Technol 44:2257

    Article  CAS  Google Scholar 

  25. Asuquo E, Martin A, Nzerem P, Siperstein F, Fan X (2017) J Environ Chem Eng 5:679

    Article  CAS  Google Scholar 

  26. Zhu Q, Moggridge GD, D’Agostino C (2016) Chem Eng J 306:1223

    Article  CAS  Google Scholar 

  27. Hosseini-Bandegharaei A, Allahabadi A, Rahmani-Sani A, Rastegar A, Khamirchi R, Mehrpouyan M, Hekmat-Shoar R, Pajohankia Z (2016) J Radioanal Nuclear Chem 309:761

    CAS  Google Scholar 

  28. Mineral Commodaties Summaries (2022) US Geological Survey, Reston, VA. https://www.usgs.gov. Accessed 11 June 2022

  29. Wang L, Wang P, Chen WQ, Wang QQ, Lu HS (2020) J Clean Prod 270:122464

    Article  CAS  Google Scholar 

  30. Longo S, Cellura M, Guarino F, Brunaccini G, Ferraro M (2019) Sci Total Environ 685:59

    Article  CAS  PubMed  Google Scholar 

  31. Li XY, Ge JP, Chen WQ, Wang P (2019) Resour Conserv Recycl 145:322

    Article  Google Scholar 

  32. Das S, Behera SS, Murmu BM, Mohapatra RK, Mandal D, Samantray R, Parhi PK, Senanayake G (2018) Sep Purif Technol 202:248

    Article  CAS  Google Scholar 

  33. Yuksekdag A, Kose-Mutlu B, Siddiqui AF, Wiesner MR, Koyuncu I (2022) Chemosphere 293:133620

    Article  CAS  PubMed  Google Scholar 

  34. Wang M, Zhou X, Liu Y, Xu H, Wu Y, Zhou L (2020) Appl Geochem 119:104639

    Article  CAS  Google Scholar 

  35. Zhou J, Ma S, Chen Y, Ning S, Wei Y, Fujita T (2021) Hydrometallurgy 204:105724

    Article  CAS  Google Scholar 

  36. Ivanov N, Abilmagzhanov A, Shokobayev N, Adelbayev I, Nurtazina A (2020) Proc Natl Acad Sci Repub Kaz, Ser Geol Tech Sci 4:156

    Google Scholar 

  37. Wang W, Pranolo Y, Cheng CY (2013) Sep Purif Technol 108:96

    Article  CAS  Google Scholar 

  38. Bordean DM, Cojocariu A, Horablaga M, Cojocariu L, Alda S, Nica D, Alda L, Borozan AB (2013) Int Multidiscip Sci GeoConference: SGEM 1:865

    Google Scholar 

  39. Ayawei N, Ebelegi AN, Wankasi D (2017) J Chem 2017:3039817

    Article  Google Scholar 

  40. Wang J, Guo X (2020) Chemosphere 258:127279

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Department of Chemistry, Cape Peninsula University of Technology, and especially the staff of the Instrumentation laboratory, Cape Town Campus. The authors would also wish to acknowledge the CPUT URF for financial support of this work. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaheeda Adonis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adonis, S., Oosthuysen, T. Evaluation of scandium sorption using modified Amberlite XAD-4 resin. Monatsh Chem 153, 1185–1196 (2022). https://doi.org/10.1007/s00706-022-02977-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-022-02977-x

Keywords

Navigation