Skip to main content

Advertisement

Log in

Production of oil and gas through thermal and thermo-catalytic pyrolysis of waste polyethylene

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Waste polyethylene is one of the most abundant plastics coming to the municipal waste. Polyethylene releases toxic chemicals, which deteriorate the environment and human health. This study investigates the valorization of waste polyethylene through thermal and thermo-catalytic pyrolysis process. Being low cost and reusable, the ordinary Portland and white cements were used as a catalyst. The thermal, white cement catalyzed, and Portland cement catalyzed pyrolysis produced 83.16%, 90.99%, and 89.61% relative amount of oil, respectively, at optimum temperature of 500 °C. For time optimization, the pyrolysis reaction was carried out for different time intervals between 15 and 78 min. The catalyst weight of 30% was found best option for increasing the hydrocarbon yield and cutting down the reaction time and is deemed as ensuring the economic disposal of the waste polyethylene. The oil product was broken down into fractions with boiling points comparable to gasoline, kerosene, and diesel and some residual fraction. The gaseous product was analyzed through different chemical analysis and combustibility tests. The oil product was analyzed using FT-IR and GC–MS techniques. It was observed that the oil product is composed of alkane and alkenes. The oil products of catalytic and thermal processes exhibited different chemical compositions. The number of compounds and their nature varied with a change in pyrolysis approach.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jambeck JR, Geyer R, Wilcox C, Siegler TR, Perryman M, Andrady A, Narayan R, Law KL (2015) Science 347:768

    Article  CAS  Google Scholar 

  2. Li J, Lu H, Guo J, Xu Z, Zhou Y (2007) Environ Sci Technol 41:1995

    Article  CAS  Google Scholar 

  3. Al-Salem SM, Lettieri P, Baeyens J (2009) Waste Manag 29:2625

    Article  CAS  Google Scholar 

  4. Sawada K, Kobayashi M, Satoh K (2015) Monatsh Chem 146:547

    Article  CAS  Google Scholar 

  5. Siddiqui MN, Redhwi HH (2009) Fuel Process Technol 90:545

    Article  CAS  Google Scholar 

  6. Mabood F, Shah J, Jan MR (2010) J Chem Soc Pak 32:574

    CAS  Google Scholar 

  7. Bagri R, Williams PT (2002) J Anal Appl Pyrolysis 63:29

    Article  CAS  Google Scholar 

  8. Demirbas A (2004) J Anal Appl Pyrolysis 72:97

    Article  CAS  Google Scholar 

  9. Insura N, Onwudili JA, Williams PT (2010) Energ Fuel 24:4231

    Article  CAS  Google Scholar 

  10. Shah J, Jan MR, Hussain Z (2005) Polym Degrad Stab 87:329

    Article  CAS  Google Scholar 

  11. Panda AK, Singh RK, Mishra DK (2010) Renew Sustain Energ Rev 14:233

    Article  CAS  Google Scholar 

  12. Shah J, Jan MR, Khan KM, Hussain Z (2012) J Solid Waste Technol Manag 38:1

    Article  CAS  Google Scholar 

  13. Dixit S, Dixit G, Verma V (2016) Fuel 179:368

    Article  CAS  Google Scholar 

  14. Hargreaves JSJ (2018) Catalysis 30:1

    Article  CAS  Google Scholar 

  15. Yonggang ZXWHW, Dongxia LKY (2010) Prog Chem 5:27

    Google Scholar 

  16. Bennadji H, Smith K, Shabangu S, Fisher EM (2013) Energ Fuel 27:1453

    Article  CAS  Google Scholar 

  17. Syamsiro M, Saptoadi H, Norsujianto T, Noviasri P, Cheng S, Alimuddin Z, Yoshikawa K (2014) Energy Procedia 47:180

    Article  CAS  Google Scholar 

  18. Dutta P, Dutta AK, Sarma P, Borah R (2014) Monatsh Chem 145:505

    Article  CAS  Google Scholar 

  19. Ronsse F, Van-Hecke S, Dickinson D, Prins W (2013) GCB Bioenergy 5:104

    Article  CAS  Google Scholar 

  20. Helle S, Bennett NM, Lau K, Matsui JH, Duff SJ (2007) Carbohydr Res 342:2365

    Article  CAS  Google Scholar 

  21. Borges FC, Xie Q, Min M, Muniz LAR, Farenzena M, Trierweiler JO, Chen P, Ruan R (2014) Bioresour Technol 166:518

    Article  CAS  Google Scholar 

  22. del Remedio HM, García ÁN, Marcilla A (2007) J Anal Appl Pyrolysis 78:272

    Article  Google Scholar 

  23. Hussain Z, Khan KM, Khan A, Ullah S, Karim A, Perveen S (2013) J Anal Appl Pyrolysis 101:90

    Article  CAS  Google Scholar 

  24. Hussain Z, Sulaiman SA, Khan A, Khan KM, Perveen S, Naz MY (2016) Waste Biomass Valor 7:1481

    Article  CAS  Google Scholar 

  25. Hussain Z, Bashir N, Khan MI, Hussain K, Sulaiman SA, Naz MY, Ibrahim KA, AbdEl-Salam NM (2017) Energ Fuel 31:12100

    Article  CAS  Google Scholar 

  26. Hussain K, Bashir N, Hussain Z, Naz MY, Sulaiman SA, Ghaffar A, Khan KM (2018) Int J Green Energ 15:758

    Article  CAS  Google Scholar 

  27. Hussain Z, Sulaiman SA, Gul H, Farooq S, Khan KM, Gulab H, Naz MY (2016) Can J Chem Eng 94:94

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, under the Research Group Project No. RG-1440-095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Naz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, Z., Khatak, M., Khan, K.M. et al. Production of oil and gas through thermal and thermo-catalytic pyrolysis of waste polyethylene. Monatsh Chem 151, 1475–1483 (2020). https://doi.org/10.1007/s00706-020-02656-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02656-9

Keywords

Navigation