Skip to main content
Log in

Gallium–indium ordering in REPt2Ga3In (RE = Y, Gd–Yb) phases with NdRh2Sn4-type structure

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The gallium-rich quaternary intermetallic compounds REPt2Ga3In (RE = Y, Gd–Yb) were synthesized by arc melting of the elements. Small single crystals were grown by induction heating the arc-melted buttons in sealed tantalum ampoules. The REPt2Ga3In phases were characterized through X-ray powder patterns. The structures of GdPt2Ga2.95In1.05 [a = 1760.28(4) pm, b = 429.09(5) pm, c = 675.37(14) pm, wR2 = 0.0618, 1104 F2 values, and 45 parameters] and TbPt2Ga3.14In0.86 [a = 1746.56(3) pm, b = 427.05(5) pm, c = 672.69(13) pm, wR2 = 0.0554, 1086 F2 values, and 45 parameters] were refined from X-ray single-crystal diffractometer data. These gallide indides are the first ternary ordered representatives of the orthorhombic NdRh2Sn4-type structure, space group Pnma. The striking basic building units are platinum-centered trigonal prisms Pt1@Gd2Ga4 and Pt2@Gd2Ga2In2 with larger edge lengths for the indium-substituted prism. Refinements of the occupancy parameters indicate the formation of small homogeneity ranges. The indium atoms are positioned at the edges of adjacent prisms and form zig-zag chains (330 pm In–In) extending along the y-axis. Temperature-dependent magnetic susceptibility data of GdPt2Ga3In show Curie–Weiss paramagnetism with an anomaly observed at T = 12.7(1) K, proven as intrinsic by zero-field heat capacity measurements, pointing towards a stable canted antiferromagnetic ground state.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. West AR (1984) Solid state chemistry and its applications. Wiley, Chichester

    Google Scholar 

  2. Wells AF (1984) Structural inorganic chemistry. Clarendon Press, Oxford

    Google Scholar 

  3. Villars P, Cenzual K (2018) Pearson’s crystal data: crystal structure database for inorganic compounds (release 2018/19). ASM International®, Materials Park

    Google Scholar 

  4. Emsley J (1999) The elements. Oxford University Press, Oxford

    Google Scholar 

  5. Stetskiv AO, Pavlyuk VV, Bodak OI (1998) Pol J Chem 72:959

    CAS  Google Scholar 

  6. Voßwinkel D, Niehaus O, Gerke B, Benndorf C, Eckert H, Pöttgen R (2015) Z Anorg Allg Chem 641:238

    Article  CAS  Google Scholar 

  7. Voßwinkel D, Benndorf C, Eckert H, Matar SF, Pöttgen R (2016) Z Kristallogr 231:475

    Google Scholar 

  8. Stalder ED, Wörle M, Nesper R (2010) Inorg Chim Acta 363:4355

    Article  CAS  Google Scholar 

  9. Liu X-C, Lin N, Wang J, Pan M-Y, Zhao X, Tao X-T, Xia S-Q (2013) Inorg Chem 52:11836

    Article  CAS  PubMed  Google Scholar 

  10. Ghasemi M, Lidin S, Johansson J, Wang F (2014) Intermetallics 46:40

    Article  CAS  Google Scholar 

  11. Galadzhun YaV, Horiacha MM, Nychyporuk GP, Rodewald UC, Pöttgen R, Zaremba VI (2016) Z Anorg Allg Chem 642:896

    Article  CAS  Google Scholar 

  12. Méot-Meyer M, Venturini G, Malaman B, Roques B (1985) Mater Res Bull 20:913

    Article  Google Scholar 

  13. Engelbert S, Niepmann D, Block T, Heletta L, Pöttgen R (2018) Z Naturforsch 73b:875

    Article  CAS  Google Scholar 

  14. Salvador JR, Hoang K, Mahanti SD, Kanatzidis MG (2007) Inorg Chem 46:6933

    Article  CAS  PubMed  Google Scholar 

  15. Smetana V, Miller GJ, Corbett JD (2013) Inorg Chem 52:12502

    Article  CAS  PubMed  Google Scholar 

  16. You T-S, Bobev S (2010) J Solid State Chem 183:1258

    Article  CAS  Google Scholar 

  17. Mao J-G, Goodey J, Guloy AM (2002) Inorg Chem 41:931

    Article  CAS  PubMed  Google Scholar 

  18. Subbarao U, Sebastian A, Rayaprol S, Yadav CS, Svane A, Vaitheeswaran G, Peter SC (2013) Cryst Growth Des 13:352

    Article  CAS  Google Scholar 

  19. Bailey MS, DiSalvo FJ (2003) J Alloys Compd 353:146

    Article  CAS  Google Scholar 

  20. Donohue J (1974) The structures of the elements. Wiley, New York

    Google Scholar 

  21. Hoffmann R-D, Fickenscher T, Pöttgen R, Felser C, Łątka K, Kmiec R (2002) Solid State Sci 4:609

    Article  CAS  Google Scholar 

  22. Pöttgen R, Gulden T, Simon A (1999) GIT Labor-Fachz 43:133

    Google Scholar 

  23. Pöttgen R, Lang A, Hoffmann R-D, Künnen B, Kotzyba G, Müllmann R, Mosel BD, Rosenhahn C (1999) Z Kristallogr 214:143

    Google Scholar 

  24. Yvon K, Jeitschko W, Parthé E (1977) J Appl Crystallogr 10:73

    Article  Google Scholar 

  25. Palatinus L (2013) Acta Crystallogr B 69:1

    Article  CAS  PubMed  Google Scholar 

  26. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786

    Article  CAS  Google Scholar 

  27. Petříček V, Dušek M, Palatinus L (2014) Z Kristallogr 229:345

    Google Scholar 

Download references

Acknowledgements

We thank Dipl.-Ing. Jutta Kösters and Dr. Rolf-Dieter Hoffmann for the single-crystal data collections. The research stay of MH in Münster was supported by the Deutscher Akademischer Austauschdienst.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Pöttgen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horiacha, M., Zaremba, V.I., Stegemann, F. et al. Gallium–indium ordering in REPt2Ga3In (RE = Y, Gd–Yb) phases with NdRh2Sn4-type structure. Monatsh Chem 150, 1409–1415 (2019). https://doi.org/10.1007/s00706-019-02464-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-019-02464-w

Keywords

Navigation