Skip to main content
Log in

The interaction mechanism of nifedipine and pepsin

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The interaction mechanism between nifedipine (NDP) and pepsin (PEP) at 298, 310, and 318 K was studied by various spectroscopic techniques and molecular docking. The experimental results showed that NDP mainly quenched the fluorescence of PEP by dynamic quenching of non-radiative energy transfer, but no significant changes in the secondary structure of PEP. The protein binding rate (W) of NDP measured at 310 K was 71.79–89.15%, and a binding rate model of NDP and PEP was established, W = − 0.1273R2 − 0.0519R + 0.8973. Hill’s coefficients were approximately 1, which showed that the interaction of NDP and PEP will not affect the binding of subsequent drug to the protein. The molecular docking technique was used to simulate the interaction between NDP and PEP, the results demonstrated that the binding site of NDP is located in the active center of pepsin, which was consistent with the conclusion of the spectroscopic method, and it was also proved that the interaction of PEP–NDP system was driven by hydrophobic and hydrogen bonding.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Filgueira GCD, Filgueira OAS, Carvalho DM, Marques MP, Moisés ECD, Duarte G, Lanchote VL, Cavalli RC (2017) Br J Clin Pharmacol 83:1571

    Article  CAS  Google Scholar 

  2. Li GC, Liu BS, Zhang QJ (2016) Luminescence 31:1054

    Article  CAS  Google Scholar 

  3. Wang CD, Liu BS, Bian G, Ma LH (2017) Spectrosc Lett 50:476

    Article  CAS  Google Scholar 

  4. Zhang QJ, Liu BS, Li GX, Han R, Lv YK (2016) Spectrosc Spect Anal 36:2879

    CAS  Google Scholar 

  5. Wang X, Liu Y, He LL, Liu B, Zhang SY, Ye X, Jing JJ, Zhang JF, Gao M, Wang X (2015) Food Chem Toxicol 78:42

    Article  CAS  Google Scholar 

  6. Yang XL, Ye ZW, Yuan Y, Zheng ZQ, Shi JN, Ying Y, Huang P (2013) Luminescence 28:428

    Google Scholar 

  7. Sahu S, Bishi S, Behera PK (2011) J Mol Liq 158:39

    Article  Google Scholar 

  8. Wang SJ, Peng YL, Zhang CG, Ma QP, Peng XX, Ren LL (2017) Bull Korean Chem Soc 38:740

    Google Scholar 

  9. Yin MM, Dong P, Chen WQ, Xu SP, Yang LY, Jiang FL, Liu Y (2017) Langmuir 33:5111

    Google Scholar 

  10. Liu ST, Tao HL, Shou HJ (2011) Chin J Anal Lab 30:12

    CAS  Google Scholar 

  11. Cui MM, Liu BS, Li TT, Duan ST (2016) Spectrosc Lett 49:575

    Google Scholar 

  12. Hemmateenejad B, Shamsipur M, Samari F, Khayamian T, Ebrahimi M, Rezaei Z (2012) J Pharmaceut Biomed 67–68:204

    Google Scholar 

  13. Wang T, Xiang BR, Li Y, Chen CY, Zhou XH, Wang ZM, Dong Y, Wang Y, Fang HS (2009) J Mol Struct 921:192

    Google Scholar 

  14. Zeng HJ, Yang D, Hu GZ, Yang R, Qu LB (2016) J Mol Recognit 29:481

    Article  Google Scholar 

  15. Shen XC, Liang H, He XW, Wang XX (2004) Chin J Anal Chem 32:388

    CAS  Google Scholar 

  16. Chaves OA, Cesarin-Sobrinho D, Sant’Anna CMR, Carvalho MGD, Suzart LR, Catunda-Junior FEA, Netto-Ferreira JC, Ferreira ABB (2017) J Photochem PhotobiolA 336:37

    Article  Google Scholar 

  17. Liu BS, Cao SN, Li ZY, Chong BH (2013) Chin J Lumin 34:489

    Google Scholar 

  18. Wang P, Xie SS, Guo JJ, Bu HZ, Chen XJ (2013) Chin J Clin Pharmacol Ther 18:939

    Google Scholar 

  19. Liu BS, Wang J, Xue CL, Yang C, Lü YK (2011) Z Phys Chem 225:461

    Article  Google Scholar 

  20. Sun Y, Zhao YY, Li GB, Yang SY, Hu XY, Fan J (2011) J Chin Chem Soc (Taipei) 58:606

    Google Scholar 

  21. Sharifi T, Ghayeb Y, Mohammadi T (2017) Monatsh Chem 148:784

    Article  Google Scholar 

  22. Fang YF, Xu H, Shen LL, Huang FW, Yibulayin S, Huang SY, Tian SL, Hu ZL, He ZD, Li FR, Li YO, Zhou K (2015) Luminescence 30:861

    Google Scholar 

  23. Wang GK, Wang DC, Li X, Lu Y (2011) Colloids Surf B 84:274

    Article  Google Scholar 

  24. Zeng HJ, Li MT, Hu FF (2016) Chin J Lumin 37:484

    Google Scholar 

  25. Wang YR, Fang Q, Guo CH, Liu Y (2016) Spectrosc Spect Anal 36:3415

    Google Scholar 

  26. Sekowski S, Bitiucki M, Ionov M, Zdeb M, Abdulladjanova N, Rakhimov R, Mavlyanov S, Bryszewska M, Zamaraeva M (2018) J Lumin 194:171

    Article  Google Scholar 

  27. Makarska-Bialokoz M (2018) Spectrochim Acta A 193:24

    Article  Google Scholar 

  28. Agrahari AK, Doss CGP (2017) J Cell Biochem 118:3730

    Article  CAS  Google Scholar 

  29. Shahidha R, Muthu S, Raja M, Raj MR, Narayana B, Nayak PS, Sarojini BK (2017) Optik 140:1127

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of National Science Foundation of China (Grant no. 21375032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baosheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Liu, B., Wang, C. et al. The interaction mechanism of nifedipine and pepsin. Monatsh Chem 149, 2123–2130 (2018). https://doi.org/10.1007/s00706-018-2269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-018-2269-9

Keywords

Navigation