Skip to main content
Log in

Study of conformational changes in serum albumin by binding of chlorfenvinphos using multispectroscopic techniques and molecular dynamic simulation

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Chlorfenvinphos has many potential hazards for the environment because of its chemical stability and biological toxicity. Chlorfenvinphos binding properties with serum albumin, SA (human serum albumin, HSA, and bovine serum albumin, BSA) and the protein structural changes have been determined using UV–Vis, fluorescence spectroscopy, molecular docking, and molecular dynamic simulation. The fluorescence emission of HSA/BSA was quenched by chlorfenvinphos. The results revealed that chlorfenvinphos was strongly bound to HSA/BSA [K b  = (8.08 ± 0.02) × 105 and (2.39 ± 0.04) × 104 dm3 mol−1] and static quenching was confirmed. The distance between the donor (HSA/BSA) and acceptor (chlorfenvinphos), r = 3.73 nm and r = 5.72 nm, was obtained according to fluorescence resonance energy transfer. According to UV–Vis and fluorescence spectroscopy, some changes were observed in conformation of HSA/BSA. Molecular docking studies revealed chlorfenvinphos can bind in the large hydrophobic cavity of subdomain IIA near Trp214 with a binding energy equal to −29.65 kJ mol−1. In addition, BSA can bind near Trp135 with a binding energy equal to −29.57 kJ mol−1. Moreover, MD simulation results suggested that this pesticide could interact with HSA/BSA, probably with a slight modification of its tertiary structure. The results of the different optical techniques and molecular modeling confirmed each other.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Domínguez-Vidal A, Ortega-Barrales P, Molina-Díaz A (2007) J Fluoresc 17:271

    Article  Google Scholar 

  2. Cooper J, Dobson H (2007) Crop Prot 26:1337

    Article  CAS  Google Scholar 

  3. Azab HA, Duerkop A, Mogahed EM, Awad FK, El Aal RM, Kamel RM (2012) J Fluoresc 22:659

    Article  CAS  Google Scholar 

  4. Ran D, Wu X, Zheng J, Yang J, Zhou H, Zhang M, Tang Y (2007) J Fluoresc 17:721

    Article  CAS  Google Scholar 

  5. Gavrilescu M (2005) Eng Life Sci 5:497

    Article  CAS  Google Scholar 

  6. Kolpin D, Thurman E, Linhart S (2000) Sci Total Environ 248:115

    Article  CAS  Google Scholar 

  7. Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R (2006) Life Sci 79:1160

    Article  CAS  Google Scholar 

  8. Mnif W, Hassine AIH, Bouaziz A, Bartegi A, Thomas O, Roig B (2011) Int J Environ Res Public Health 8:2265

    Article  CAS  Google Scholar 

  9. Porte C, Janer G, Lorusso LC, Ortiz-Zarragoitia M, Cajaraville MP, Fossi MC, Canesi L (2006) Comp Biochem Physiol C Toxicol Pharmacol 143:303

    Article  CAS  Google Scholar 

  10. Hosseini SH, Khalkhali RA, Noor P (2010) Monatsh Chem 141:1049

    Article  CAS  Google Scholar 

  11. Sosnowska B, Huras B, Krokosz A, Bukowska B (2013) Int J Biol Macromolec 57:38

    Article  CAS  Google Scholar 

  12. Sosnowska B, Huras B, Nowacka-Krukowska H, Bukowska B (2013) Biologia 68:773

    Article  CAS  Google Scholar 

  13. Han XL, Tian FF, Ge YS, Jiang FF, Lai L, Li DW, Yu QL, Wang J, Lin C, Liu Y (2012) J Photochem Photobiol 109:1

    Article  CAS  Google Scholar 

  14. Cserháti T, Forgács E (1995) J Chromatogr A 699:285

    Article  Google Scholar 

  15. Kragh-Hansen U (1981) Pharmacol Rev 33:1

    Google Scholar 

  16. Zsila F, Bikadi Z, Malik D, Hari P, Pechan I, Berces A, Hazai E (2011) Bioinformatics 27:1806

    Article  CAS  Google Scholar 

  17. Carter DC, Ho JX (1994) Adv Protein Chem 45:153

    Article  CAS  Google Scholar 

  18. Ding F, Diao JX, Sun Y, Sun Y (2012) J Agr Food Chem 60:7218

    Article  CAS  Google Scholar 

  19. Wang Y, Zhang G, Wang L (2014) Pestic Biochem Phys 108:66

    Article  CAS  Google Scholar 

  20. Zhang J, Zhuang S, Tong C, Liu W (2013) J Agr Food Chem 61:7203

    Article  CAS  Google Scholar 

  21. Wang Y, Tang B, Zhang H, Zhou Q, Zhang G (2009) J Photochem Photobiol B Biol 94:183

    Article  CAS  Google Scholar 

  22. Zhang P, Li Z, Wang X, Shen Z, Wang Y, Yan J, Zhou Z, Zhu W (2013) Chirality 25:719

    Article  CAS  Google Scholar 

  23. McLean DJ, Giese AC (1950) J Biol Chem 187:537

    CAS  Google Scholar 

  24. Ackermann T (1987) Ber Bunsen-Ges Phys Chem 91:1398

    Article  Google Scholar 

  25. Eftink MR, Ghiron CA (1981) Anal Biochem 114:199

    Article  CAS  Google Scholar 

  26. Feroz SR, Mohamad SB, Bakri ZSD, Malek SNA, Tayyab S (2013) PLoS One 8:1

    Article  Google Scholar 

  27. Soares S, Mateus N, De Freitas V (2007) J Agr Food Chem 55:6726

    Article  CAS  Google Scholar 

  28. Peng W, Ding F, Peng YK, Jiang YT, Zhang L (2013) J Agr Food Chem 61:12415

    Article  CAS  Google Scholar 

  29. Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) J Pharmaceut Biomed Anal 41:393

    Article  CAS  Google Scholar 

  30. Mathew M, Sreedhanya S, Manoj P, Aravindakumar CT, Aravind UK (2014) J Phys Chem B 118:3832

    Article  CAS  Google Scholar 

  31. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) J Comput Chem 26:1701

    Article  Google Scholar 

  32. Schüttelkopf AW, Van Aalten DM (2004) Acta Cryst D 60:1355

    Article  Google Scholar 

  33. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) J Phys Chem 97:10269

    Article  CAS  Google Scholar 

  34. Van der Spoel D, Berendsen H (1997) Biophys J 72:2032

    Article  Google Scholar 

  35. Darden T, York D, Pedersen L (1993) J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  36. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) J Chem Phys 103:8577

    Article  CAS  Google Scholar 

  37. Berendsen HJ, Postma J, Pl M, Van Gunsteren WF, DiNola ARHJ, Haak JR (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  38. Hoover WG (1985) Phys Rev A 31:1695

    Article  CAS  Google Scholar 

  39. Nose S, Klein ML (1983) Mol Phys 50:1055

    Article  CAS  Google Scholar 

  40. Nose SUI (1984) Mol Phys 52:255

    Article  CAS  Google Scholar 

  41. Parrinello M, Rahman A (1981) J Appl Phys 52:7182

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Research Council of Isfahan University of Technology is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yousef Ghayeb.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharifi, T., Ghayeb, Y. & Mohammadi, T. Study of conformational changes in serum albumin by binding of chlorfenvinphos using multispectroscopic techniques and molecular dynamic simulation. Monatsh Chem 148, 781–791 (2017). https://doi.org/10.1007/s00706-016-1814-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-016-1814-7

Keywords

Navigation