Skip to main content
Log in

Convenient synthesis of novel heteroatom-substituted quinolines via Friedländer annulation using phosphotungstic acid as a reusable catalyst

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using phosphotungstic acid as a reusable catalyst, a convenient synthesis of novel heteroatom-substituted quinolines from 2-aminoaryl ketones and α-heteroatom bearing ketones has been demonstrated via Friedländer annulation. The transformation has the advantages of operational simplicity, wide substrate scope, solvent-free conditions, and catalyst recyclability, making it a practical protocol for the preparation of heteroatom-substituted quinoline products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. N’Da DD, Smith PJ (2014) Med Chem 23:1214

    Article  Google Scholar 

  2. Roberts L, Egan TJ, Joiner KA, Hoppe HC (2008) Antimicrob Agent Chem 52(5):1840–1842

    Article  CAS  Google Scholar 

  3. Vieira NC, Herrenknecht C, Vacus J, Fournet A, Bories C, Figadere B, Espindola LS, Loiseau PM (2008) Biomed Pharmacother 62:684–689

    Article  CAS  Google Scholar 

  4. Muruganantham N, Sivakumar R, Anbalagan N, Gunasekaran V, Leonard JT (2004) Biol Pharm Bull 27:1683

    Article  CAS  Google Scholar 

  5. Paul N, Muthusubramanian S (2014) Med Chem 23:1612

    Article  CAS  Google Scholar 

  6. Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CCJ (2001) Med Chem 44:2374

    Article  CAS  Google Scholar 

  7. Mukherjee S, Pal M (2013) Curr Med Chem 20:4386

    Article  CAS  Google Scholar 

  8. Maguire MP, Sheets KR, McVety K, Spada AP, Zilberstein AJ (1994) Med Chem 37:2129

    Article  CAS  Google Scholar 

  9. Altenbach RJ, Liu H, Banfor PN, Browman KE, Fox GB, Fryer RM, Komater VA, Krueger KM, Marsh K, Miller TR, Pan J, Pan L, Sun, Thiffault C, Wetter J, Zhao C, Zhou D, Esbenshade TA, Hancock AA, Cowart MDJ (2007) Med Chem 50:5439

    Article  CAS  Google Scholar 

  10. Zuo XH, Dong ZJ, Li W, Yuan GM, Cui ZW, Liu Y, Li XK (2014) Mater Technol 48:59

    CAS  Google Scholar 

  11. Lim JM, Kwon JY, Xu F, Kim HU, Hwang DH (2013) J Nanosci Nanotechnol 13:8007

    Article  CAS  Google Scholar 

  12. Ou S, Lin Z, Duan C, Zhang H, Bai Z (2006) Chem Commun 42:4392–4394

    Article  Google Scholar 

  13. Concilio S, Pfister PM, Tirelli N, Kocher C, Suter UW (2001) Macromolecules 34:3607

    Article  CAS  Google Scholar 

  14. Espinosa LM, Ronda JC, Galia M, Cadiz V (2010) J Polym Sci Polym Chem 869

  15. Zhu SS, Lin WY, Yuan L (2013) Dyes Pigm 95:644

    CAS  Google Scholar 

  16. Hranjec M, Horak E, Tireli M, Pavlovic G, Karminski-Zamola G (2013) Dyes Pigm 99:465

    Article  Google Scholar 

  17. Shahabadi N, Maghsudi M (2013) Dyes Pigm 96:377

    Article  CAS  Google Scholar 

  18. Krotko DG, Fedotov KV, Tolmachev AI (2005) Dyes Pigm 65:183

    Article  CAS  Google Scholar 

  19. Patel JP, Kuang YH, Chen ZS, Korlipara VL (2011) Bioorg Med Chem Lett 21:6495

    Article  CAS  Google Scholar 

  20. Mohajeri A, Shahamirian MJ (2010) Phys Org Chem 23:440

    CAS  Google Scholar 

  21. Tiano M, Belmont P (2008) J Org Chem 73:4101

    Article  CAS  Google Scholar 

  22. Dhanabal T, Sangeetha R, Mohan PS (2006) Tetrahedron 62:6258

    Article  CAS  Google Scholar 

  23. Wolf C, Lerebours R (2003) J Org Chem 68:7077

    Article  CAS  Google Scholar 

  24. Skaup ZH (1880) Ber Dtsch Chem Ges 13:2086

    Google Scholar 

  25. Friedlander P (1882) Ber Dtsch Chem Ges 15:2572

    Article  Google Scholar 

  26. Combes A (1888) Bull Soc Chim Fr 49:89

    Google Scholar 

  27. Zhao P, Yan XY, Yin H, Xi CJ (2014) Org Lett 16:1120

    Article  CAS  Google Scholar 

  28. Chen M, Sun N, Liu YH (2013) Org Lett 15:5574

    Article  CAS  Google Scholar 

  29. Ji XC, Huang HW, Li YB, Chen HJ, Jiang HF (2012) Angew Chem Int Ed 51:7292

    Article  CAS  Google Scholar 

  30. Zhang XX, Yao TL, Campo MA, Larock R (2010) Tetrahedron 66:1177

    Article  CAS  Google Scholar 

  31. Gabriele B, Mancuso R, Lupinacci E, Spina R, Salerno G, Veltri L, Dibenedetto A (2009) Tetrahedron 65:8507

    Article  CAS  Google Scholar 

  32. Bandyopadhyay P, Prasad GK, Sathe M, Sharma P, Kumar A, Kaushik M (2014) RSC Adv 4:6638

    Article  CAS  Google Scholar 

  33. Perez-Mayoral E, Musilova Z, Gil B, Marszalek B, Polozij M, Nachtigall P, Cejka J (2012) Dalton Trans 41:4036

    Article  CAS  Google Scholar 

  34. Genovese S, Epifano S, Marcotullio MC, Pelucchini C, Curini M (2014) Tetrahedron Lett 52:3474

    Article  Google Scholar 

  35. Lekhok KC, Bhuyan D, Prajapati D, Boruah RC (2010) Mol Divers 14:841

    Article  CAS  Google Scholar 

  36. Genovese S, Epifano F, Marcotullio MC, Soleimani E, Khodaei MM, Batooie N, Samadi S (2010) Chem Pharm Bull 58:212

    Article  Google Scholar 

  37. Sridharan V, Ribelles P, Ramos MT, Menendez JC (2009) J Org Chem 74:5715

    Article  CAS  Google Scholar 

  38. Fang L, Yu JJ, Liu Y, Wang AY, Wang LM (2013) Tetrahedron 69:110049

    Google Scholar 

  39. Reddy BVS, Venkateswarlu A, Reddy GN, Reddy YVR (2013) Tetrahedron Lett 43:5767

    Article  Google Scholar 

  40. Abdollahi-Alibeik M, Pouriayevali M (2012) Catal Commun 22:13

    Article  CAS  Google Scholar 

  41. Akbari J, Heydari A, Kalhor HR, Kohan SA (2010) J Comb Chem 12:137

    Article  CAS  Google Scholar 

  42. Zhang M, Xiong B, Yang W, Kumar DNT, Ding YQ (2012) Monatsh Chem 143:471

    Article  CAS  Google Scholar 

  43. Ghassamipour S, Sardarian AR (2009) Tetrahedron Lett 50:514

    Article  CAS  Google Scholar 

  44. Hasaninejad A, Zare A, Shekouhy M, Ameri-Rad J (2011) Green Chem 13:958

    Article  CAS  Google Scholar 

  45. Liu K, Chen TT, Hou ZQ, Wang YY, Dai LY (2014) Catal Lett 144:314

    Article  CAS  Google Scholar 

  46. Kamble SB, Swami RK, Sakate SS, Rode CV (2012) Chem Plus Chem 78:1393

    Google Scholar 

  47. Fan GZ, Wang M, Liao CJ, Fang T, Li JF, Zhou RH (2013) Carbohyd Polym 94:71

    Article  CAS  Google Scholar 

  48. Terent’ev AO, Yaremenko IA, Vil’ VA, Moiseev IK, Kon’kov SA, Dembitsky VM, Levitsky DO, Nikishin GI (2013) Org Biomol Chem 11:2613

    Article  Google Scholar 

  49. Zhang YM, Degirmenci V, Li C, Hensen EJM (2011) Chem Sus Chem 4:59

    Article  Google Scholar 

  50. Keri RS, Hosamani KM, Reddy HRS (2009) Catal Lett 131:321

    Article  CAS  Google Scholar 

  51. Li YH, Lu LQ, Das S, Pisiewicz S, Junge K, Beller M (2012) J Am Chem Soc 134:18325

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the funds of the “National Natural Science Foundation of China (21101080)”, “Fundamental Research Funds for the Central Universities of China (2014ZZ0047)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MM., Zhang, M., Xie, F. et al. Convenient synthesis of novel heteroatom-substituted quinolines via Friedländer annulation using phosphotungstic acid as a reusable catalyst. Monatsh Chem 146, 663–671 (2015). https://doi.org/10.1007/s00706-014-1358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1358-7

Keywords

Navigation