Skip to main content
Log in

Bacillus phage phi18-2 is a novel temperate virus with an unintegrated genome present in the cytoplasm of lysogenic cells as a linear phage-plasmid

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Bacillus subtilis is a Gram-positive bacterium that is widely used in fermentation and in the pharmaceutical industry. Phage contamination occasionally occurs in various fermentation processes and causes significant economic loss. Here, we report the isolation and characterization of a temperate B. subtilis phage, termed phi18-2, from spore powder manufactured in a fermentation plant. Transmission electron microscopy showed that phi18-2 has a symmetrical polyhedral head and a long noncontractile tail. Receptor analysis showed that phi18-2 recognizes wall teichoic acid (WTA) for infection. The phage virions have a linear double-stranded DNA genome of 64,467 bp with identical direct repeat sequences of 309 bp at each end of the genome. In lysogenic cells, the phage genome was found to be present in the cytoplasm without integration into the host cell chromosome, and possibly as a linear phage-plasmid with unmodified ends. Our data may provide some insight into the molecular basis of the unique lysogenic cycle of phage phi18-2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data supporting the conclusions of the study are included in the manuscript.

References

  1. Abd El-Hack ME, El-Saadony MT, Shafi ME, Qattan SYA, Batiha GE, Khafaga AF, Abdel-Moneim A-ME, Alagawany M (2020) Probiotics in poultry feed: a comprehensive review. J Anim Physiol Anim Nutr 104:1835–1850

    Article  CAS  Google Scholar 

  2. Ackermann HW (1998) Tailed bacteriophages: the order caudovirales. Adv Virus Res 51:135–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Aliakbar Ahovan Z, Hashemi A, De Plano LM, Gholipourmalekabadi M, Seifalian A (2020) Bacteriophage based biosensors: trends, outcomes and challenges. Nanomaterials (Basel) 10:501.

  4. Allison SE, D’Elia MA, Arar S, Monteiro MA, Brown ED (2011) Studies of the genetics, function, and kinetic mechanism of TagE, the wall teichoic acid glycosyltransferase in Bacillus subtilis 168*. J Biol Chem 286:23708–23716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alonso JC, Luder G, Stiege AC, Chai S, Weise F, Trautner TA (1997) The complete nucleotide sequence and functional organization of Bacillus subtilis bacteriophage SPP1. Gene 204:201–212

    Article  CAS  PubMed  Google Scholar 

  6. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai D, Rao Y, Zhan Y, Wang Q, Chen S (2019) Engineering Bacillus for efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 126:1632–1642

    Article  CAS  PubMed  Google Scholar 

  9. Casjens SR, Hendrix RW (2015) Bacteriophage lambda: early pioneer and still relevant. Virology 479–480:310–330

    Article  PubMed  Google Scholar 

  10. Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brüssow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chukeatirote E, Phongtang W, Kim J, Jo A, Jung LS, Ahn J (2018) Significance of bacteriophages in fermented soybeans: A review. Biomol Concepts 9:131–142

    Article  CAS  PubMed  Google Scholar 

  12. Dean DH, Orrego JC, Hutchison KW, Halvorson HO (1976) New temperate bacteriophage for Bacillus subtilis, rho 11. Journal of virology 20:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erez Z, Steinberger-Levy I, Shamir M, Doron S, Stokar-Avihail A, Peleg Y, Melamed S, Leavitt A, Savidor A, Albeck S, Amitai G, Sorek R (2017) Communication between viruses guides lysis–lysogeny decisions. Nature 541:488–493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Errington J, Aart LTV (2020) Microbe Profile: Bacillus subtilis: model organism for cellular development, and industrial workhorse. Microbiology (Reading) 166:425–427

    Article  CAS  PubMed  Google Scholar 

  15. Gabiatti N, Yu P, Mathieu J, Lu GW, Wang X, Zhang H, Soares HM, Alvarez PJJ (2018) Bacterial endospores as phage genome carriers and protective shells. Appl Environ Microbiol 84:e01186–18.

  16. Garneau JE, Moineau S (2011) Bacteriophages of lactic acid bacteria and their impact on milk fermentations. Microb Cell Fact 10(Suppl 1):S20

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ghosh K, Kang HS, Hyun WB, Kim KP (2018) High prevalence of Bacillus subtilis-infecting bacteriophages in soybean-based fermented foods and its detrimental effects on the process and quality of Cheonggukjang. Food Microbiol 76:196–203

    Article  CAS  PubMed  Google Scholar 

  18. Gillis A, Mahillon J (2014) Phages preying on Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis: Past, present and future. Viruses 6:2623–2672

    Article  PubMed  PubMed Central  Google Scholar 

  19. Giraffa G, Zago M, Carminati D (2017) Lactic acid bacteria bacteriophages in dairy products: problems and solutions. In: P. Poltronieri (ed) Microbiol Dairy Process, pp 233–250.

  20. Groth AC, Calos MP (2004) Phage integrases: biology and applications. J Mol Biol 335:667–678

    Article  CAS  PubMed  Google Scholar 

  21. Hemphill HE, Whiteley HR (1975) Bacteriophages of Bacillus subtilis. Bacteriol Rev 39:257–315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB (2017) Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J 11:1511–1520

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kordi M, Salami R, Bolouri P, Delangiz N, AsgariLajayer B, van Hullebusch ED (2022) White biotechnology and the production of bio-products. Syst Microbiol Biomanuf 2:413–429

    Article  CAS  Google Scholar 

  24. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lazarevic V, Soldo B, Médico N, Pooley H, Bron S, Karamata D (2005) Bacillus subtilis alpha-phosphoglucomutase is required for normal cell morphology and biofilm formation. Appl Environ Microbiol 71:39–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu M, Bischoff KM, Gill JJ, Mire-Criscione MD, Berry JD, Young R, Summer EJ (2015) Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillus fermentum. Biotechnol Biofuels 8:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Los M (2012) Minimization and prevention of phage infections in bioprocesses. Methods Mol Biol 834:305–315

    Article  CAS  PubMed  Google Scholar 

  29. Martin AC, Lopez R, Garcia P (1996) Analysis of the complete nucleotide sequence and functional organization of the genome of Streptococcus pneumoniae bacteriophage Cp-1. J Virol 70:3678–3687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Meijer WJ, Castilla-Llorente V, Villar L, Murray H, Errington J, Salas M (2005) Molecular basis for the exploitation of spore formation as survival mechanism by virulent phage phi29. EMBO J 24:3647–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pfeifer E, Moura de Sousa JA, Touchon M, Rocha EPC (2021) Bacteria have numerous distinctive groups of phage-plasmids with conserved phage and variable plasmid gene repertoires. Nucleic Acids Res 49:2655–2673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Piligrimova EG, Kazantseva OA, Kazantsev AN, Nikulin NA, Skorynina AV, Koposova ON, Shadrin AM (2021) Putative plasmid prophages of Bacillus cereus sensu lato may hold the key to undiscovered phage diversity. Sci Rep 11:7611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO (2012) DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics 28:i333–i339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ravin V, Ravin N, Casjens S, Ford ME, Hatfull GF, Hendrix RW (2000) Genomic sequence and analysis of the atypical temperate bacteriophage N15. J Mol Biol 299:53–73

    Article  CAS  PubMed  Google Scholar 

  37. Redondo RA, Kupczok A, Stift G, Bollback JP (2013) Complete genome sequence of the novel phage MG-B1 infecting Bacillus weihenstephanensis. Genome Announc 1:e00216–13.

  38. Rohwer F, Prangishvili D, Lindell D (2009) Roles of viruses in the environment. Environ Microbiol 11:2771–2774

    Article  PubMed  Google Scholar 

  39. Sambrook J (2001) Molecular cloning: a laboratory manual. Third edition. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., ©2001

  40. Samson JE, Moineau S (2013) Bacteriophages in food fermentations: new frontiers in a continuous arms race. Annu Rev Food Sci Technol 4:347–368

    Article  CAS  PubMed  Google Scholar 

  41. Schallmey M, Singh A, Ward OP (2004) Developments in the use of Bacillus species for industrial production. Can J Microbiol 50:1–17

    Article  CAS  PubMed  Google Scholar 

  42. Schilling T, Hoppert M, Hertel R (2018) Genomic analysis of the recent viral isolate vB_BthP-Goe4 reveals increased diversity of φ29-Like phages. Viruses 10(11):624.

  43. Sonenshein AL (2006) Bacteriophages: how bacterial spores capture and protect phage DNA. Current Biology 16:R14–R16

    Article  CAS  PubMed  Google Scholar 

  44. Spizizen J (1958) Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc Natl Acad Sci U S A 44:1072–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Su Y, Liu C, Fang H, Zhang D (2020) Bacillus subtilis: a universal cell factory for industry, agriculture, biomaterials and medicine. Microbial Cell Factories 19:173

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sullivan MJ, Petty NK, Beatson SA (2011) Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Warner FD, Kitos GA, Romano MP, Hemphill HE (1977) Characterization of SPβ: a temperate bacteriophage from Bacillus subtilis 168M. Canadian Journal of Microbiology 23:45–51

    Article  CAS  Google Scholar 

  48. Weigel C, Seitz H (2006) Bacteriophage replication modules. FEMS Microbiol Rev 30:321–381

    Article  CAS  PubMed  Google Scholar 

  49. Zhang Z, Liang L, Li D, Li Y, Sun Q, Li Y, Yang H (2023) Bacillus subtilis phage phi18: genomic analysis and receptor identification. Arch Virol 168:17

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant no. 31970150).

Author information

Authors and Affiliations

Authors

Contributions

Yutong Li and Hongjiang Yang designed the research. Yutong Li, Yansheng Huo, Li Liang, and Donghang Li conducted the experiments. Yutong Li analyzed data and wrote the draft. Hongjiang Yang wrote and refined the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hongjiang Yang.

Ethics declarations

Competing interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Handling Editor: Johannes Wittmann

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 140 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Huo, Y., Liang, L. et al. Bacillus phage phi18-2 is a novel temperate virus with an unintegrated genome present in the cytoplasm of lysogenic cells as a linear phage-plasmid. Arch Virol 169, 81 (2024). https://doi.org/10.1007/s00705-024-06014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00705-024-06014-6

Keywords

Navigation