Skip to main content

Advertisement

Log in

Role of the receptor for activated C kinase 1 during viral infection

  • Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Viruses can survive only in living cells, where they depend on the host’s enzymatic system for survival and reproduction. Virus–host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Giovannoni F, Bosch I, Polonio CM, Torti MF, Wheeler MA, Li Z, Romorini L, Rodriguez Varela MS, Rothhammer V, Barroso A, Tjon EC, Sanmarco LM, Takenaka MC, Modaresi SMS, Gutiérrez-Vázquez C, Zanluqui NG, Dos Santos NB, Munhoz CD, Wang Z, Damonte EB, Sherr D, Gehrke L, Peron JPS, Garcia CC, Quintana FJ (2020) AHR is a Zika virus host factor and a candidate target for antiviral therapy. Nat Neurosci 23:939–951. https://doi.org/10.1038/s41593-020-0664-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Linero FN, Sepúlveda CS, Giovannoni F, Castilla V, García CC, Scolaro LA, Damonte EB (2012) Host cell factors as antiviral targets in arenavirus infection. Viruses 4:1569–1591. https://doi.org/10.3390/v4091569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mochly-Rosen D, Khaner H, Lopez J (1991) Identification of intracellular receptor proteins for activated protein kinase C. Proc Natl Acad Sci USA 88:3997–4000. https://doi.org/10.1073/pnas.88.9.3997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ron D, Chen CH, Caldwell J, Jamieson L, Orr E, Mochly-Rosen D (1994) Cloning of an intracellular receptor for protein kinase C: a homolog of the beta subunit of G proteins. Proc Natl Acad Sci USA 91:839–843. https://doi.org/10.1073/pnas.91.3.839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Adams DR, Ron D, Kiely PA (2011) RACK1, A multifaceted scaffolding protein: structure and function. Cell Commun Signal 9:22. https://doi.org/10.1186/1478-811x-9-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sondek J, Siderovski DP (2001) Ggamma-like (GGL) domains: new frontiers in G-protein signaling and beta-propeller scaffolding. Biochem Pharmacol 61:1329–1337. https://doi.org/10.1016/s0006-2952(01)00633-5

    Article  CAS  PubMed  Google Scholar 

  7. Steele MR, McCahill A, Thompson DS, MacKenzie C, Isaacs NW, Houslay MD, Bolger GB (2001) Identification of a surface on the beta-propeller protein RACK1 that interacts with the cAMP-specific phosphodiesterase PDE4D5. Cell Signal 13:507–513. https://doi.org/10.1016/s0898-6568(01)00167-x

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Higuera I, Fenoglio J, Li Y, Lewis C, Panchenko MP, Reiner O, Smith TF, Neer EJ (1996) Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit. Biochemistry 35:13985–13994. https://doi.org/10.1021/bi9612879

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Jain R, Li G (2016) Roles of Rack1 proteins in fungal pathogenesis. Biomed Res Int 2016:4130376. https://doi.org/10.1155/2016/4130376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ron D, Jiang Z, Yao L, Vagts A, Diamond I, Gordon A (1999) Coordinated movement of RACK1 with activated betaIIPKC. J Biol Chem 274:27039–27046. https://doi.org/10.1074/jbc.274.38.27039

    Article  CAS  PubMed  Google Scholar 

  11. Usacheva A, Smith R, Minshall R, Baida G, Seng S, Croze E, Colamonici O (2001) The WD motif-containing protein receptor for activated protein kinase C (RACK1) is required for recruitment and activation of signal transducer and activator of transcription 1 through the type I interferon receptor. J Biol Chem 276:22948–22953. https://doi.org/10.1074/jbc.M100087200

    Article  CAS  PubMed  Google Scholar 

  12. Xu Y, Wang N, Ling F, Li P, Gao Y (2009) Receptor for activated C-kinase 1, a novel binding partner of adiponectin receptor 1. Biochem Biophys Res Commun 378:95–98. https://doi.org/10.1016/j.bbrc.2008.11.026

    Article  CAS  PubMed  Google Scholar 

  13. Vomastek T, Iwanicki MP, Schaeffer HJ, Tarcsafalvi A, Parsons JT, Weber MJ (2007) RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol Cell Biol 27:8296–8305. https://doi.org/10.1128/mcb.00598-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu L, Chen W, Li G, Chen H, Liao W, Zhang L, Xiao X (2019) Upregulated RACK1 attenuates gastric cancer cell growth and epithelial-mesenchymal transition via suppressing Wnt/β-catenin signaling. Onco Targets Ther 12:4795–4805. https://doi.org/10.2147/ott.S205869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duan F, Wu H, Jia D, Wu W, Ren S, Wang L, Song S, Guo X, Liu F, Ruan Y, Gu J (2018) O-GlcNAcylation of RACK1 promotes hepatocellular carcinogenesis. J Hepatol 68:1191–1202. https://doi.org/10.1016/j.jhep.2018.02.003

    Article  CAS  PubMed  Google Scholar 

  16. Masi M, Garattini E, Bolis M, Di Marino D, Maraccani L, Morelli E, Grolla AA, Fagiani F, Corsini E, Travelli C, Govoni S, Racchi M, Buoso E (2020) OXER1 and RACK1-associated pathway: a promising drug target for breast cancer progression. Oncogenesis 9:105. https://doi.org/10.1038/s41389-020-00291-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gandin V, Senft D, Topisirovic I, Ronai ZA (2013) RACK1 function in cell motility and protein synthesis. Genes Cancer 4:369–377. https://doi.org/10.1177/1947601913486348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang W, Wang X, Wang X, Ahmed S, Hussain S, Zhang N, Ma Y, Wang S (2019) Integration of RACK1 and ethylene signaling regulates plant growth and development in Arabidopsis. Plant Sci 280:31–40. https://doi.org/10.1016/j.plantsci.2018.11.009

    Article  CAS  PubMed  Google Scholar 

  19. Jones JE, Le Sage V, Lakdawala SS (2021) Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 19:272–282. https://doi.org/10.1038/s41579-020-00449-9

    Article  CAS  PubMed  Google Scholar 

  20. Goodsell DS (2015) Illustrations of the HIV life cycle. Curr Top Microbiol Immunol 389:243–252. https://doi.org/10.1007/82_2015_437

    Article  CAS  PubMed  Google Scholar 

  21. Helenius A (2018) Virus entry: looking back and moving forward. J Mol Biol 430:1853–1862. https://doi.org/10.1016/j.jmb.2018.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhang Y, Cao G, Zhu L, Chen F, Zar MS, Wang S, Hu X, Wei Y, Xue R, Gong C (2017) Integrin beta and receptor for activated protein kinase C are involved in the cell entry of Bombyx mori cypovirus. Appl Microbiol Biotechnol 101:3703–3716. https://doi.org/10.1007/s00253-017-8158-z

    Article  CAS  PubMed  Google Scholar 

  23. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215. https://doi.org/10.1186/gb-2007-8-5-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhong Y, Tang X, Sheng X, Xing J, Zhan W (2019) Voltage-dependent anion channel protein 2 (VDAC2) and receptor of activated protein c kinase 1 (RACK1) act as functional receptors for lymphocystis disease virus infection. J Virol 93:e00122-19. https://doi.org/10.1128/jvi.00122-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sheng X, Zhong Y, Zeng J, Tang X, Xing J, Chi H, Zhan W (2020) Lymphocystis disease virus (Iridoviridae) enters flounder (Paralichthys olivaceus) gill cells via a caveolae-mediated endocytosis mechanism facilitated by viral receptors. Int J Mol Sci 21:4722. https://doi.org/10.3390/ijms21134722

    Article  CAS  PubMed Central  Google Scholar 

  26. Mercer J, Schelhaas M, Helenius A (2010) Virus entry by endocytosis. Annu Rev Biochem 79:803–833. https://doi.org/10.1146/annurev-biochem-060208-104626

    Article  CAS  PubMed  Google Scholar 

  27. McKenzie J, El-Guindy A (2015) Epstein–Barr virus lytic cycle reactivation. Curr Top Microbiol Immunol 391:237–261. https://doi.org/10.1007/978-3-319-22834-1_8

    Article  CAS  PubMed  Google Scholar 

  28. Baumann M, Gires O, Kolch W, Mischak H, Zeidler R, Pich D, Hammerschmidt W (2000) The PKC targeting protein RACK1 interacts with the Epstein–Barr virus activator protein BZLF1. Eur J Biochem 267:3891–3901. https://doi.org/10.1046/j.1432-1327.2000.01430.x

    Article  CAS  PubMed  Google Scholar 

  29. Nyamweya S, Hegedus A, Jaye A, Rowland-Jones S, Flanagan KL, Macallan DC (2013) Comparing HIV-1 and HIV-2 infection: lessons for viral immunopathogenesis. Rev Med Virol 23:221–240. https://doi.org/10.1002/rmv.1739

    Article  CAS  PubMed  Google Scholar 

  30. Staudt RP, Alvarado JJ, Emert-Sedlak LA, Shi H, Shu ST, Wales TE, Engen JR, Smithgall TE (2020) Structure, function, and inhibitor targeting of HIV-1 Nef-effector kinase complexes. J Biol Chem 295:15158–15171. https://doi.org/10.1074/jbc.REV120.012317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gallina A, Rossi F, Milanesi G (2001) Rack1 binds HIV-1 Nef and can act as a Nef-protein kinase C adaptor. Virology 283:7–18. https://doi.org/10.1006/viro.2001.0855

    Article  CAS  PubMed  Google Scholar 

  32. Coronel-Ruiz C, Gutiérrez-Barbosa H, Medina-Moreno S, Velandia-Romero ML, Chua JV, Castellanos JE, Zapata JC (2020) Humanized mice in dengue research: a comparison with other mouse models. Vaccines (Basel). https://doi.org/10.3390/vaccines8010039

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hafirassou ML, Meertens L, Umaña-Diaz C, Labeau A, Dejarnac O, Bonnet-Madin L, Kümmerer BM, Delaugerre C, Roingeard P, Vidalain PO, Amara A (2017) A global interactome map of the dengue virus NS1 identifies virus restriction and dependency host factors. Cell Rep 21:3900–3913. https://doi.org/10.1016/j.celrep.2017.11.094

    Article  CAS  PubMed  Google Scholar 

  34. Subramani C, Nair VP, Anang S, Mandal SD, Pareek M, Kaushik N, Srivastava A, Saha S, Shalimar NB, Ranjith-Kumar CT, Surjit M (2018) Host–virus protein interaction network reveals the involvement of multiple host processes in the life cycle of hepatitis E virus. mSystems. https://doi.org/10.1128/mSystems.00135-17

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee JS, Tabata K, Twu WI, Rahman MS, Kim HS, Yu JB, Jee MH, Bartenschlager R, Jang SK (2019) RACK1 mediates rewiring of intracellular networks induced by hepatitis C virus infection. PLoS Pathog 15:e1008021. https://doi.org/10.1371/journal.ppat.1008021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Hou P, He DC, Wang H, He H (2021) RACK1 degrades MAVS to promote bovine ephemeral fever virus replication via upregulating E3 ubiquitin ligase STUB1. Vet Microbiol 257:109096. https://doi.org/10.1016/j.vetmic.2021.109096

    Article  CAS  PubMed  Google Scholar 

  37. Bi J, Zhao Q, Zhu L, Li X, Yang G, Liu J, Yin G (2018) RACK1 is indispensable for porcine reproductive and respiratory syndrome virus replication and NF-κB activation in Marc-145 cells. Sci Rep 8:2985. https://doi.org/10.1038/s41598-018-21460-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu X, Bi J, Zhao Q, Li M, Zuo Q, Wang X, Lan R, Li X, Yang G, Liu J, Yin G (2019) Overexpression of RACK1 enhanced the replication of porcine reproductive and respiratory syndrome virus in Marc-145 cells and promoted the NF-κB activation via upregulating the expression and phosphorylation of TRAF2. Gene 709:75–83. https://doi.org/10.1016/j.gene.2019.05.046

    Article  CAS  PubMed  Google Scholar 

  39. Yang C, Lan R, Wang X, Zhao Q, Li X, Bi J, Wang J, Yang G, Lin Y, Liu J, Yin G (2020) Integrin β3, a RACK1 interacting protein, is critical for porcine reproductive and respiratory syndrome virus infection and NF-κB activation in Marc-145 cells. Virus Res 282:197956. https://doi.org/10.1016/j.virusres.2020.197956

    Article  CAS  PubMed  Google Scholar 

  40. Yang C, Zuo Q, Liu X, Zhao Q, Pu H, Gao L, Zhao L, Guo Z, Lin Y, Liu J, Bi J, Yin G (2021) Small molecule screening identified cepharanthine as an inhibitor of porcine reproductive and respiratory syndrome virus infection in vitro by suppressing integrins/ILK/RACK1/PKCα/NF-κB signalling axis. Vet Microbiol 255:109016. https://doi.org/10.1016/j.vetmic.2021.109016

    Article  CAS  PubMed  Google Scholar 

  41. Lin W, Zhang Z, Xu Z, Wang B, Li X, Cao H, Wang Y, Zheng SJ (2015) The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2 (VDAC2) inhibits apoptosis and enhances viral replication. J Biol Chem 290:8500–8510. https://doi.org/10.1074/jbc.M114.585687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Nayak A, Berry B, Tassetto M, Kunitomi M, Acevedo A, Deng C, Krutchinsky A, Gross J, Antoniewski C, Andino R (2010) Cricket paralysis virus antagonizes Argonaute 2 to modulate antiviral defense in Drosophila. Nat Struct Mol Biol 17:547–554. https://doi.org/10.1038/nsmb.1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Majzoub K, Hafirassou ML, Meignin C, Goto A, Marzi S, Fedorova A, Verdier Y, Vinh J, Hoffmann JA, Martin F, Baumert TF, Schuster C, Imler JL (2014) RACK1 controls IRES-mediated translation of viruses. Cell 159:1086–1095. https://doi.org/10.1016/j.cell.2014.10.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hyodo K, Suzuki N, Okuno T (2019) Hijacking a host scaffold protein, RACK1, for replication of a plant RNA virus. New Phytol 221:935–945. https://doi.org/10.1111/nph.15412

    Article  CAS  PubMed  Google Scholar 

  45. Zhang C, He L, Kang K, Chen H, Xu L, Zhang Y (2014) Screening of cellular proteins that interact with the classical swine fever virus non-structural protein 5A by yeast two-hybrid analysis. J Biosci 39:63–74. https://doi.org/10.1007/s12038-013-9411-y

    Article  CAS  PubMed  Google Scholar 

  46. Wang X, Gao L, Yang X, Zuo Q, Lan R, Li M, Yang C, Lin Y, Liu J, Yin G (2020) Porcine RACK1 negatively regulates the infection of classical swine fever virus and the NF-κB activation in PK-15 cells. Vet Microbiol 246:108711. https://doi.org/10.1016/j.vetmic.2020.108711

    Article  CAS  PubMed  Google Scholar 

  47. Gallo S, Ricciardi S, Manfrini N, Pesce E, Oliveto S, Calamita P, Mancino M, Maffioli E, Moro M, Crosti M, Berno V, Bombaci M, Tedeschi G, Biffo S (2018) RACK1 specifically regulates translation through its binding to ribosomes. Mol Cell Biol. https://doi.org/10.1128/mcb.00230-18

    Article  PubMed  PubMed Central  Google Scholar 

  48. Miluzio A, Beugnet A, Volta V, Biffo S (2009) Eukaryotic initiation factor 6 mediates a continuum between 60S ribosome biogenesis and translation. EMBO Rep 10:459–465. https://doi.org/10.1038/embor.2009.70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ceci M, Gaviraghi C, Gorrini C, Sala LA, Offenhäuser N, Marchisio PC, Biffo S (2003) Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly. Nature 426:579–584. https://doi.org/10.1038/nature02160

    Article  CAS  PubMed  Google Scholar 

  50. Yang Y, Wang Z (2019) IRES-mediated cap-independent translation, a path leading to hidden proteome. J Mol Cell Biol 11:911–919. https://doi.org/10.1093/jmcb/mjz091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray NK, Wickens M (1998) Control of translation initiation in animals. Annu Rev Cell Dev Biol 14:399–458. https://doi.org/10.1146/annurev.cellbio.14.1.399

    Article  CAS  PubMed  Google Scholar 

  52. Montero H, García-Román R, Mora SI (2015) eIF4E as a control target for viruses. Viruses 7:739–750. https://doi.org/10.3390/v7020739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Martins N, Imler JL, Meignin C (2016) Discovery of novel targets for antivirals: learning from flies. Curr Opin Virol 20:64–70. https://doi.org/10.1016/j.coviro.2016.09.005

    Article  CAS  PubMed  Google Scholar 

  54. Mokrejs M, Vopálenský V, Kolenaty O, Masek T, Feketová Z, Sekyrová P, Skaloudová B, Kríz V, Pospísek M (2006) IRESite: the database of experimentally verified IRES structures (www.iresite.org). Nucleic Acids Res 34:D125-130. https://doi.org/10.1093/nar/gkj081

    Article  CAS  PubMed  Google Scholar 

  55. Johnson AG, Grosely R, Petrov AN, Puglisi JD (2017) Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci. https://doi.org/10.1098/rstb.2016.0177

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kerr CH, Wang QS, Keatings K, Khong A, Allan D, Yip CK, Foster LJ, Jan E (2015) The 5’ untranslated region of a novel infectious molecular clone of the dicistrovirus cricket paralysis virus modulates infection. J Virol 89:5919–5934. https://doi.org/10.1128/jvi.00463-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hertz MI, Thompson SR (2011) Mechanism of translation initiation by Dicistroviridae IGR IRESs. Virology 411:355–361. https://doi.org/10.1016/j.virol.2011.01.005

    Article  CAS  PubMed  Google Scholar 

  58. Sun C, Querol-Audí J, Mortimer SA, Arias-Palomo E, Doudna JA, Nogales E, Cate JH (2013) Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Nucleic Acids Res 41:7512–7521. https://doi.org/10.1093/nar/gkt510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. LaFontaine E, Miller CM, Permaul N, Martin ET, Fuchs G (2020) Ribosomal protein RACK1 enhances translation of poliovirus and other viral IRESs. Virology 545:53–62. https://doi.org/10.1016/j.virol.2020.03.004

    Article  CAS  PubMed  Google Scholar 

  60. Jha S, Rollins MG, Fuchs G, Procter DJ, Hall EA, Cozzolino K, Sarnow P, Savas JN, Walsh D (2017) Trans-kingdom mimicry underlies ribosome customization by a poxvirus kinase. Nature 546:651–655. https://doi.org/10.1038/nature22814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ullah H, Hou W, Dakshanamurthy S, Tang Q (2019) Host targeted antiviral (HTA): functional inhibitor compounds of scaffold protein RACK1 inhibit herpes simplex virus proliferation. Oncotarget 10:3209–3226. https://doi.org/10.18632/oncotarget.26907

    Article  PubMed  PubMed Central  Google Scholar 

  62. Demirov D, Gabriel G, Schneider C, Hohenberg H, Ludwig S (2012) Interaction of influenza A virus matrix protein with RACK1 is required for virus release. Cell Microbiol 14:774–789. https://doi.org/10.1111/j.1462-5822.2012.01759.x

    Article  CAS  PubMed  Google Scholar 

  63. Kim HS, Lee K, Kim SJ, Cho S, Shin HJ, Kim C, Kim JS (2018) Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection. Genome Res 28:859–868. https://doi.org/10.1101/gr.230250.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nielsen MH, Flygaard RK, Jenner LB (2017) Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal 35:272–281. https://doi.org/10.1016/j.cellsig.2017.01.026

    Article  CAS  PubMed  Google Scholar 

  65. Kubota T, Yokosawa N, Yokota S, Fujii N (2002) Association of mumps virus V protein with RACK1 results in dissociation of STAT-1 from the alpha interferon receptor complex. J Virol 76:12676–12682. https://doi.org/10.1128/jvi.76.24.12676-12682.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xie T, Chen T, Li C, Wang W, Cao L, Rao H, Yang Q, Shu HB, Xu LG (2019) RACK1 attenuates RLR antiviral signaling by targeting VISA-TRAF complexes. Biochem Biophys Res Commun 508:667–674. https://doi.org/10.1016/j.bbrc.2018.11.203

    Article  CAS  PubMed  Google Scholar 

  67. Tardif M, Savard M, Flamand L, Gosselin J (2002) Impaired protein kinase C activation/translocation in Epstein–Barr virus-infected monocytes. J Biol Chem 277:24148–24154. https://doi.org/10.1074/jbc.M109036200

    Article  CAS  PubMed  Google Scholar 

  68. Qin C, Niu C, Shen Z, Zhang Y, Liu G, Hou C, Dong J, Zhao M, Cheng Q, Yang X, Zhang J (2021) RACK1 T50 phosphorylation by AMPK potentiates its binding with IRF3/7 and inhibition of type 1 IFN production. J Immunol (Baltimore, MD, 1950) 207:1411–1418. https://doi.org/10.4049/jimmunol.2100086

    Article  CAS  Google Scholar 

Download references

Funding

This research was support by the National Natural Science Foundation of China (grant no. 81971945).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Data collection and analysis were performed by Yuhan Li, Qingru Yang, Lulu Wang, and Xiaolan Liu. The first draft of the manuscript was written by Yan Wang and Xiaorong Qiao. Hua Wang and Hongxing Shen commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongxing Shen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Handling Editor: Ana Cristina Bratanich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Qiao, X., Li, Y. et al. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 167, 1915–1924 (2022). https://doi.org/10.1007/s00705-022-05484-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05484-w

Navigation