Skip to main content
Log in

Genomic analysis of a recombinant coxsackievirus A19 identified in Xinxiang, China, in 2019

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

Coxsackievirus A19 (CV-A19) is an enterovirus belonging to the species Enterovirus C, and the prototype strain 8663 was isolated from a patient with Guillain-Barré syndrome in Japan. In this study, we determined the complete genome sequence of a CV-A19 isolate identified in a stool sample from a child with hand, foot, and mouth disease in Xinxiang, Henan, China, in 2019 and named it CV-A19 strain 2019103106/XX/CHN/2019 – 2019103106 for short. The genome of this virus consists of 7409 nucleotides, including a 6624-nucleotide open reading frame encoding a potential polyprotein precursor of 2207 amino acids. Compared with strain 8663, strain 2019103106 showed 85.1% nucleotide sequence identity in the complete genome and 85.6% identity in the VP1 coding region, reflecting their genetic divergence. Phylogenetic analysis of strain 2019103106 and other representative EV-C strains with sequences available in the GenBank database showed that CV-A19 strains could be grouped into two clusters based on the complete or 214-nucleotide partial VP1 coding regions, and 2019103106 belonged to cluster 1, with the closest relationship to CV-A19 strain SWG82 from Shandong, China. Phylogenetic trees based on the P2 and P3 coding regions highlighted the divergence between strains 2019103106 and 8663, implying that strain 2019103106 had undergone recombination. Further recombination analysis suggested that strains V18A-like CV-A1 and BBD26-like CV-A19 probably recombined to yield strain 2019103106. The present study points out the genetic diversity of CV-A19. It expands our understanding of the evolution of the CV-A19 genome, but more genome sequences of epidemic strains are needed to explain the phylogeny and evolutionary history of CV-A19 comprehensively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

The complete genome sequence of the CV-A19 strain 2019103106/XX/CHN/2019, described in this study, was deposited in the GenBank database under accession number MT175706.

References

  1. Savolainen-Kopra C, Blomqvist S, Susi P (2021) Enteroviruses (Picornaviridae). In: Bamford DH, Zuckerman M (eds) Encyclopedia of Virology (Fourth Edition). Academic Press, pp 245–255. https://doi.org/10.1016/B978-0-12-809633-8.21544-6

  2. Hu L, Zhang Y, Hong M, Fan Q, Yan D, Zhu S, Wang D, Xu W (2019) Phylogenetic analysis and phenotypic characterisatics of two Tibet EV-C96 strains. Virol J 16:40. https://doi.org/10.1186/s12985-019-1151-7

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oberste MS, Maher K, Kilpatrick DR, Flemister MR, Brown BA, Pallansch MA (1999) Typing of human enteroviruses by partial sequencing of VP1. J Clin Microbiol 37:1288–1293. https://doi.org/10.1128/JCM.37.5.1288-1293.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oberste MS, Maher K, Kilpatrick DR, Pallansch MA (1999) Molecular evolution of the human enteroviruses: correlation of serotype with VP1 sequence and application to picornavirus classification. J Virol 73:1941–1948. https://doi.org/10.1128/JVI.73.3.1941-1948.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kroneman A, Vennema H, Deforche K, v d Avoort H, Penaranda S, Oberste MS, Vinje J, Koopmans M, (2011) An automated genotyping tool for enteroviruses and noroviruses. J Clin Virol 51:121–125. https://doi.org/10.1016/j.jcv.2011.03.006

    Article  CAS  PubMed  Google Scholar 

  6. Bian L, Gao F, Mao Q, Sun S, Wu X, Liu S, Yang X, Liang Z (2019) Hand, foot, and mouth disease associated with coxsackievirus A10: more serious than it seems. Expert Rev Anti Infect Ther 17:233–242. https://doi.org/10.1080/14787210.2019.1585242

    Article  CAS  PubMed  Google Scholar 

  7. Gonzalez G, Carr MJ, Kobayashi M, Hanaoka N, Fujimoto T (2019) Enterovirus-associated hand-foot and mouth disease and neurological complications in Japan and the rest of the world. Int J Mol Sci 20:5201. https://doi.org/10.3390/ijms20205201

    Article  CAS  PubMed Central  Google Scholar 

  8. Kimmis BD, Downing C, Tyring S (2018) Hand-foot-and-mouth disease caused by coxsackievirus A6 on the rise. Cutis 102:353–356

    PubMed  Google Scholar 

  9. Duong V, Mey C, Eloit M, Zhu H, Danet L, Huang Z, Zou G, Tarantola A, Cheval J, Perot P, Laurent D, Richner B, Ky S, Heng S, Touch S, Sovann L, van Doorn R, Tan Tran T, Farrar JJ, Wentworth DE, Das SR, Stockwell TB, Manuguerra JC, Delpeyroux F, Guan Y, Altmeyer R, Buchy P (2016) Molecular epidemiology of human enterovirus 71 at the origin of an epidemic of fatal hand, foot and mouth disease cases in Cambodia. Emerg Microbes Infect 5:e104. https://doi.org/10.1038/emi.2016.101

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yao X, Bian LL, Lu WW, Li JX, Mao QY, Wang YP, Gao F, Wu X, Ye Q, Li XL, Zhu FC, Liang Z (2017) Epidemiological and etiological characteristics of herpangina and hand foot mouth diseases in Jiangsu, China, 2013–2014. Hum Vaccin Immunother 13:823–830. https://doi.org/10.1080/21645515.2016.1236879

    Article  PubMed  Google Scholar 

  11. Lee MH, Huang LM, Wong WW, Wu TZ, Chiu TF, Chang LY (2011) Molecular diagnosis and clinical presentations of enteroviral infections in Taipei during the 2008 epidemic. J Microbiol Immunol Infect 44:178–183. https://doi.org/10.1016/j.jmii.2011.01.018

    Article  PubMed  Google Scholar 

  12. Liu JF, Zhang Y, Li H (2009) Genetic characterization of VP4-VP2 of two coxsackievirus A4 isolated from patients with hand, foot and mouth disease. Zhongguo Yi Miao He Mian Yi 15:345–349

    PubMed  Google Scholar 

  13. Chan YF, AbuBaker S (2004) Recombinant human enterovirus 71 in hand, foot and mouth disease patients. Emerg Infect Dis 10:1468–1470. https://doi.org/10.3201/eid1008.040059

    Article  PubMed  Google Scholar 

  14. Puenpa J, Mauleekoonphairoj J, Linsuwanon P, Suwannakarn K, Chieochansin T, Korkong S, Theamboonlers A, Poovorawan Y (2014) Prevalence and characterization of enterovirus infections among pediatric patients with hand foot mouth disease, herpangina and influenza like illness in Thailand, 2012. PLoS ONE 9:e98888. https://doi.org/10.1371/journal.pone.0098888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abubakar S, Chee HY, Shafee N, Chua KB, Lam SK (1999) Molecular detection of enteroviruses from an outbreak of hand, foot and mouth disease in Malaysia in 1997. Scand J Infect Dis 31:331–335. https://doi.org/10.1080/00365549950163734

    Article  CAS  PubMed  Google Scholar 

  16. Zhu B, Zhong JY, Xia HM, Gong ST, Xiao MS, Xie JH, Zhang YY, Hua L, Lian GW (2010) Etiology of hand, foot and mouth disease in Guangzhou in 2008. Zhonghua Er Ke Za Zhi 48:127–130

    PubMed  Google Scholar 

  17. Li Y, Bao H, Zhang X, Zhai M, Bao X, Wang D, Zhang S (2017) Epidemiological and genetic analysis concerning the non-enterovirus 71 and non-coxsackievirus A16 causative agents related to hand, foot and mouth disease in Anyang city, Henan Province, China, from 2011 to 2015. J Med Virol 89:1749–1758. https://doi.org/10.1002/jmv.24847

    Article  CAS  PubMed  Google Scholar 

  18. Shah VA, Chong CY, Chan KP, Ng W, Ling AE (2003) Clinical characteristics of an outbreak of hand, foot and mouth disease in Singapore. Ann Acad Med Singap 32:381–387

    CAS  PubMed  Google Scholar 

  19. Cabrerizo M, De Miguel T, Armada A, Martinez-Risco R, Pousa A, Trallero G (2010) Onychomadesis after a hand, foot, and mouth disease outbreak in Spain, 2009. Epidemiol Infect 138:1775–1778. https://doi.org/10.1017/S0950268810002219

    Article  CAS  PubMed  Google Scholar 

  20. Lindenbaum JE, Van Dyck PC, Allen RG (1975) Hand, foot and mouth disease associated with coxsackievirus group B. Scand J Infect Dis 7:161–163. https://doi.org/10.3109/inf.1975.7.issue-3.01

    Article  CAS  PubMed  Google Scholar 

  21. Yao X, Bian LL, Lu WW, Li JX, Mao QY, Wang YP, Gao F, Wu X, Ye Q, Xu M, Li XL, Zhu FC, Liang ZL (2015) Enterovirus spectrum from the active surveillance of hand foot and mouth disease patients under the clinical trial of inactivated Enterovirus A71 vaccine in Jiangsu, China, 2012–2013. J Med Virol 87:2009–2017. https://doi.org/10.1002/jmv.24275

    Article  CAS  PubMed  Google Scholar 

  22. Hu YF, Du J, Zhao R, Xue Y, Yang F, Jin Q (2012) Complete genome sequence of a recombinant coxsackievirus B4 from a patient with a fatal case of hand, foot, and mouth disease in Guangxi, China. J Virol 86:10901–10902. https://doi.org/10.1128/JVI.01808-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang X, Wang H, Ding S, Wang X, Chen X, Wo Y, Wang L, Huang D, Liu W, Cao W (2013) Prevalence of enteroviruses in children with and without hand, foot, and mouth disease in China. BMC Infect Dis 13:606. https://doi.org/10.3201/eid2403.171303

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sousa IP Jr, Burlandy FM, Tavares FN, da Silva EE (2018) Enterovirus B74 associated with hand, foot and mouth disease. Infect Genet Evol 65:15–17. https://doi.org/10.1016/j.meegid.2018.07.011

    Article  PubMed  Google Scholar 

  25. Hu YQ, Xie GC, Li DD, Pang LL, Xie J, Wang P, Chen Y, Yang J, Cheng WX, Zhang Q, Jin Y, Duan ZJ (2015) Prevalence of coxsackievirus A6 and enterovirus 71 in hand, foot and mouth disease in Nanjing, China in 2013. Pediatr Infect Dis J 34:951–957. https://doi.org/10.1097/INF.0000000000000794

    Article  PubMed  Google Scholar 

  26. Russo DH, Luchs A, Machado BC, Carmona Rde C, Timenetsky Mdo C (2006) Echovirus 4 associated to hand, foot and mouth disease. Rev Inst Med Trop Sao Paulo 48:197–199. https://doi.org/10.1590/s0036-46652006000400004

    Article  PubMed  Google Scholar 

  27. Teo KW, Lai FY, Bandi S, Allen DJ, Tang JW (2019) Emergence of Coxsackie A6 hand-foot-and-mouth disease and comparative severity of Coxsackie B vs. echovirus infections, 2014–2016. UK. J Infect 78:75–86. https://doi.org/10.1016/j.jinf.2018.08.007

    Article  PubMed  Google Scholar 

  28. Wei HY, Xu YL, Huang XY, Ma H, Chen HM, Xu BL (2012) Molecular epidemiological analysis of species B enteroviruses isolated from Henan Province of China during the six months in 2010. Bing Du Xue Bao 28:114–117

    PubMed  Google Scholar 

  29. Hooi PS, Chua BH, Lee CS, Lam SK, Chua KB (2002) Hand, foot and mouth disease: University Malaya Medical Centre experience. Med J Malaysia 57:88–91

    CAS  PubMed  Google Scholar 

  30. Chen X, Ji T, Guo J, Wang W, Xu W, Xie Z (2019) Molecular epidemiology of echovirus 18 circulating in mainland China from 2015 to 2016. Virol Sin 34:50–58. https://doi.org/10.1007/s12250-018-0080-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu Z, Xu WB, Xu AQ, Wang HY, Zhang Y, Song LZ, Yang HL, Li Y, Ji F (2007) Molecular epidemiological analysis of echovirus 19 isolated from an outbreak associated with hand, foot, and mouth disease (HFMD) in Shandong Province of China. Biomed Environ Sci 20:321–328

    CAS  PubMed  Google Scholar 

  32. Zhang J, Liu H, Zhao Y, Zhang H, Sun H, Huang X, Yang Z, Liu J, Ma S (2019) Identification of a new recombinant strain of echovirus 33 from children with hand, foot, and mouth disease complicated by meningitis in Yunnan. China. Virol J 16:63. https://doi.org/10.1186/s12985-019-1164-2

    Article  PubMed  Google Scholar 

  33. Pallansch MA, Oberste MS, Lindsay Whitton J (2013) Enteroviruses: polioviruses, coxsackieviruses, echoviruses, and newer enteroviruses. In: Knipe DM, Howley PM (eds) Fields Virology: Sixth Edition. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, PA, USA, pp 510. https://doi.org/10.1002/0470857285.ch6

  34. Brown B, Oberste MS, Maher K, Pallansch MA (2003) Complete genomic sequencing shows that polioviruses and members of human enterovirus species C are closely related in the noncapsid coding region. J Virol 77:8973–8984. https://doi.org/10.1128/jvi.77.16.8973-8984.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zell R, Delwart E, Gorbalenya AE, Hovi T, King AMQ, Knowles NJ, Lindberg AM, Pallansch MA, Palmenberg AC, Reuter G, Simmonds P, Skern T, Stanway G, Yamashita T, Consortium IR (2017) ICTV virus taxonomy profile: Picornaviridae. J Gen Virol 98:2421–2422. https://doi.org/10.1099/jgv.0.000911

    Article  CAS  Google Scholar 

  36. Lipson SM, Walderman R, Costello P, Szabo K (1988) Sensitivity of rhabdomyosarcoma and guinea pig embryo cell cultures to field isolates of difficult-to-cultivate group A coxsackieviruses. J Clin Microbiol 26:1298–1303. https://doi.org/10.1128/jcm.26.7.1298-1303.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kapusinszky B, Szomor KN, Farkas A, Takacs M, Berencsi G (2010) Detection of non-polio enteroviruses in Hungary 2000–2008 and molecular epidemiology of enterovirus 71, coxsackievirus A16, and echovirus 30. Virus Genes 40:163–173. https://doi.org/10.1007/s11262-009-0440-4

    Article  CAS  PubMed  Google Scholar 

  38. Iritani N, Kaida A, Abe N, Kubo H, Sekiguchi J, Yamamoto SP, Goto K, Tanaka T, Noda M (2014) Detection and genetic characterization of human enteric viruses in oyster-associated gastroenteritis outbreaks between 2001 and 2012 in Osaka City, Japan. J Med Virol 86:2019–2025. https://doi.org/10.1002/jmv.23883

    Article  PubMed  Google Scholar 

  39. Apostol LN, Suzuki A, Bautista A, Galang H, Paladin FJ, Fuji N, Lupisan S, Olveda R, Oshitani H (2012) Detection of non-polio enteroviruses from 17 years of virological surveillance of acute flaccid paralysis in the Philippines. J Med Virol 84:624–631. https://doi.org/10.1002/jmv.23242

    Article  PubMed  PubMed Central  Google Scholar 

  40. Donbraye E, Olasunkanmi OI, Opabode BA, Ishola TR, Faleye TOC, Adewumi OM, Adeniji JA (2018) Abundance of enterovirus C in RD-L20B cell culture-negative stool samples from acute flaccid paralysis cases in Nigeria is geographically defined. J Med Microbiol 67:854–865. https://doi.org/10.1099/jmm.0.000737

    Article  CAS  PubMed  Google Scholar 

  41. Melica G, Langlois AL, Le Goff J, Viglietti D, Glotz D, Molina JM, Peraldi MN (2014) Acute enteritis associated with Coxsackievirus A19 in a kidney transplant patient. Transpl Infect Dis 16:344–346. https://doi.org/10.1111/tid.12191

    Article  CAS  PubMed  Google Scholar 

  42. Brinkman NE, Fout GS, Keely SP (2017) Retrospective surveillance of wastewater to examine seasonal dynamics of enterovirus infections. mSphere 2:e00099-00017. https://doi.org/10.1128/mSphere.00099-17

  43. Benschop KSM, van der Avoort HG, Jusic E, Vennema H, van Binnendijk R, Duizer E (2017) Polio and measles down the drain: environmental enterovirus surveillance in the Netherlands, 2005 to 2015. Appl Environ Microbiol 83:e00558-e617. https://doi.org/10.1128/AEM.00558-17

    Article  PubMed  PubMed Central  Google Scholar 

  44. Bisseux M, Debroas D, Mirand A, Archimbaud C, Peigue-Lafeuille H, Bailly JL, Henquell C (2020) Monitoring of enterovirus diversity in wastewater by ultra-deep sequencing: an effective complementary tool for clinical enterovirus surveillance. Water Res 169:115246. https://doi.org/10.1016/j.watres.2019.115246

    Article  CAS  PubMed  Google Scholar 

  45. Tao Z, Chen P, Cui N, Lin X, Ji F, Liu Y, Xiong P, Zhang L, Xu Q, Song Y, Xu A (2020) Detection of enteroviruses in urban sewage by next generation sequencing and its application in environmental surveillance. Sci Total Environ 728:138818. https://doi.org/10.1016/j.scitotenv.2020.138818

    Article  CAS  PubMed  Google Scholar 

  46. Faleye TOC, Bowes DA, Driver EM, Adhikari S, Adams D, Varsani A, Halden RU, Scotch M (2021) Wastewater-based epidemiology and long-read sequencing to identify enterovirus circulation in three municipalities in Maricopa County, Arizona, Southwest United States between June and October 2020. Viruses 13:1803. https://doi.org/10.3390/v13091803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Majumdar M, Klapsa D, Wilton T, Bujaki E, Fernandez-Garcia MD, Faleye TOC, Oyero AO, Adewumi MO, Ndiaye K, Adeniji JA, Martin J (2021) High diversity of human non-polio enterovirus serotypes identified in contaminated water in Nigeria. Viruses 13:249. https://doi.org/10.3390/v13020249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Isaacs SR, Kim KW, Cheng JX, Bull RA, Stelzer-Braid S, Luciani F, Rawlinson WD, Craig ME (2018) Amplification and next generation sequencing of near full-length human enteroviruses for identification and characterisation from clinical samples. Sci Rep 8:11889. https://doi.org/10.1038/s41598-018-30322-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Cristanziano V, Weimer K, Bottcher S, Sarfo FS, Dompreh A, Cesar LG, Knops E, Heger E, Wirtz M, Kaiser R, Norman B, Phillips RO, Feldt T, Eberhardt KA (2020) Molecular characterization and clinical description of non-polio enteroviruses detected in stool samples from HIV-positive and HIV-negative adults in Ghana. Viruses 12:221. https://doi.org/10.3390/v12020221

    Article  CAS  PubMed Central  Google Scholar 

  50. Siqueira JD, Dominguez-Bello MG, Contreras M, Lander O, Caballero-Arias H, Xutao D, Noya-Alarcon O, Delwart E (2018) Complex virome in feces from Amerindian children in isolated Amazonian villages. Nat Commun 9:4270. https://doi.org/10.1038/s41467-018-06502-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. National Health and Family Planning Commission of the People's Republic of China (2018) Diagnosis for hand, foot and mouth disease. Sanitary industry standard of the People's Republic of China, pp 1-18

  52. Green MR, Sambrook J (2012) Molecular Cloning: A Laboratory Manual, 4th edn. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  53. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal X. Trends Biochem Sci 23:403–405. https://doi.org/10.1016/s0968-0004(98)01285-7

    Article  CAS  PubMed  Google Scholar 

  54. Nicholas K, Nicholas JH (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author

  55. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549. https://doi.org/10.1093/molbev/msy096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  57. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  58. Zhou ZJ, Qiu Y, Pu Y, Huang X, Ge XY (2020) BioAider: An efficient tool for viral genome analysis and its application in tracing SARS-CoV-2 transmission. Sustain Cities Soc 63:102466. https://doi.org/10.1016/j.scs.2020.102466

    Article  PubMed  PubMed Central  Google Scholar 

  59. Martin DP, Murrell B, Golden M, Khoosal A, Muhire B (2015) RDP4: Detection and analysis of recombination patterns in virus genomes. Virus Evol 1:vev003. https://doi.org/10.1093/ve/vev003

  60. Fei D, Guo Y, Fan Q, Wang H, Wu J, Li M, Ma M (2019) Phylogenetic and recombination analyses of two deformed wing virus strains from different honeybee species in China. PeerJ 7:e7214. https://doi.org/10.7717/peerj.7214

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guimaraes ML, Velarde-Dunois KG, Segurondo D, Morgado MG (2012) The HIV-1 epidemic in Bolivia is dominated by subtype B and CRF12_BF “family” strains. Virol J 9:19. https://doi.org/10.1186/1743-422X-9-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhuang ZC, Kou ZQ, Bai YJ, Cong X, Wang LH, Li C, Zhao L, Yu XJ, Wang ZY, Wen HL (2015) Epidemiological research on hand, foot, and mouth disease in mainland China. Viruses 7:6400–6411. https://doi.org/10.3390/v7122947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zheng Y, Jit M, Wu JT, Yang J, Leung K, Liao Q, Yu H (2017) Economic costs and health-related quality of life for hand, foot and mouth disease (HFMD) patients in China. PLoS ONE 12:e0184266. https://doi.org/10.1371/journal.pone.0184266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Huang X, Wei H, Wu S, Du Y, Liu L, Su J, Xu Y, Wang H, Li X, Wang Y, Liu G, Chen W, Klena JD, Xu B (2015) Epidemiological and etiological characteristics of hand, foot, and mouth disease in Henan, China, 2008–2013. Sci Rep 5:8904. https://doi.org/10.1038/srep08904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tokarz R, Haq S, Sameroff S, Howie SRC, Lipkin WI (2013) Genomic analysis of coxsackieviruses A1, A19, A22, enteroviruses 113 and 104: viruses representing two clades with distinct tropism within enterovirus C. J Gen Virol 94:1995–2004. https://doi.org/10.1099/vir.0.053462-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lukashev AN, Drexler JF, Kotova VO, Amjaga EN, Reznik VI, Gmyl AP, Grard G, Taty Taty R, Trotsenko OE, Leroy EM, Drosten C (2012) Novel serotypes 105 and 116 are members of distinct subgroups of human enterovirus C. J Gen Virol 93:2357–2362. https://doi.org/10.1099/vir.0.043216-0

    Article  CAS  PubMed  Google Scholar 

  67. Patil PR, Chitambar SD, Gopalkrishna V (2015) Molecular surveillance of non-polio enterovirus infections in patients with acute gastroenteritis in Western India: 2004–2009. J Med Virol 87:154–161. https://doi.org/10.1002/jmv.23992

    Article  CAS  PubMed  Google Scholar 

  68. Chansaenroj J, Tuanthap S, Thanusuwannasak T, Duang-In A, Klinfueng S, Thaneskongtong N, Vutithanachot V, Vongpunsawad S, Poovorawan Y (2017) Human enteroviruses associated with and without diarrhea in Thailand between 2010 and 2016. PLoS ONE 12:e0182078. https://doi.org/10.1371/journal.pone.0182078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kumthip K, Khamrin P, Ushijima H, Maneekarn N (2017) Multiple enterovirus genotypes circulating in children hospitalized with acute gastroenteritis in Thailand. Infect Genet Evol 55:324–331. https://doi.org/10.1016/j.meegid.2017.10.002

    Article  PubMed  Google Scholar 

  70. Rojjanadumrongkul K, Kumthip K, Khamrin P, Ukarapol N, Ushijima H, Maneekarn N (2020) Enterovirus infections in pediatric patients hospitalized with acute gastroenteritis in Chiang Mai, Thailand, 2015–2018. PeerJ 8:e9645. https://doi.org/10.7717/peerj.9645

    Article  PubMed  PubMed Central  Google Scholar 

  71. Madeley CR (1982) Fatal diarrhoea and coxsackie A1 virus. Lancet 1:1013–1014. https://doi.org/10.1016/s0140-6736(82)92008-6

    Article  CAS  PubMed  Google Scholar 

  72. Kelen AE, Belbin D, Lesiak JM, Labzoffsky NA (1963) Isolation of Enteric Viruses in Ontario during 1960–1962. Can Med Assoc J 89:921–926

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Roth B, Enders M, Arents A, Pfitzner A, Terletskaia-Ladwig E (2007) Epidemiologic aspects and laboratory features of enterovirus infections in Western Germany, 2000–2005. J Med Virol 79:956–962. https://doi.org/10.1002/jmv.20917

    Article  PubMed  Google Scholar 

  74. Begier EM, Oberste MS, Landry ML, Brennan T, Mlynarski D, Mshar PA, Frenette K, Rabatsky-Ehr T, Purviance K, Nepaul A, Nix WA, Pallansch MA, Ferguson D, Cartter ML, Hadler JL (2008) An outbreak of concurrent echovirus 30 and coxsackievirus A1 infections associated with sea swimming among a group of travelers to Mexico. Clin Infect Dis 47:616–623. https://doi.org/10.1086/590562

    Article  PubMed  Google Scholar 

  75. Townsend TR, Bolyard EA, Yolken RH, Beschorner WE, Bishop CA, Burns WH, Santos GW, Saral R (1982) Outbreak of Coxsackie A1 gastroenteritis: a complication of bone-marrow transplantation. Lancet 1:820–823. https://doi.org/10.1016/s0140-6736(82)91872-4

    Article  CAS  PubMed  Google Scholar 

  76. Nix WA, Khetsuriani N, Penaranda S, Maher K, Venczel L, Cselko Z, Freire MC, Cisterna D, Lema CL, Rosales P, Rodriguez JR, Rodriguez W, Halkyer P, Ronveaux O, Pallansch MA, Oberste MS (2013) Diversity of picornaviruses in rural Bolivia. J Gen Virol 94:2017–2028. https://doi.org/10.1099/vir.0.053827-0

    Article  CAS  PubMed  Google Scholar 

  77. Adeniji JA, Ayeni FA, Ibrahim A, Tijani KA, Faleye TOC, Adewumi MO (2017) Comparison of algorithms for the detection of enteroviruses in stool specimens from children diagnosed with acute flaccid paralysis. J Pathog 2017:9256056. https://doi.org/10.1155/2017/9256056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun Q, Zhang Y, Zhu S, Cui H, Tian H, Yan D, Huang G, Zhu Z, Wang D, Li X, Jiang H, An H, Xu W (2012) Complete genome sequence of two coxsackievirus A1 strains that were cytotoxic to human rhabdomyosarcoma cells. J Virol 86:10228–10229. https://doi.org/10.1128/JVI.01567-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhang Y, Sun Q, Cui H, Yan D, Fan Q, Song Y, Zhu S, Li X, Huang G, Ji T, Hu L, Wang D, Yang Q, Xu W (2016) Circulation of multiple serotypes of highly divergent enterovirus C in the Xinjiang Uighur Autonomous Region of China. Sci Rep 6:33595. https://doi.org/10.1038/srep33595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wu W, Xu WB, Chen L, Chen HL, Liu Q, Wang DL, Chen YJ, Yao W, Li G, Feng B, Shu BH, Zhou YK, He YQ (2013) Molecular identification and analysis of human enteroviruses isolated from healthy children in Shenzhen, China from 2010 to 2011. PLoS ONE 8:e64889. https://doi.org/10.1371/journal.pone.0064889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lizasoain A, Mir D, Victoria M, Barrios ME, Blanco-Fernandez MD, Rodriguez-Osorio N, Nates S, Cisterna D, Mbayed VA, Colina R (2021) Human enterovirus diversity by next-generation sequencing analysis in urban sewage samples from Buenos Aires Metropolitan Area, Argentina: a retrospective study. Food Environ Virol 13:259–269. https://doi.org/10.1007/s12560-021-09468-y

    Article  CAS  PubMed  Google Scholar 

  82. Oberste MS, Maher K, Nix WA, Michele SM, Uddin M, Schnurr D, al-Busaidy S, Akoua-Koffi C, Pallansch MA, (2007) Molecular identification of 13 new enterovirus types, EV79-88, EV97, and EV100-101, members of the species Human Enterovirus B. Virus Res 128:34–42. https://doi.org/10.1016/j.virusres.2007.04.001

    Article  CAS  PubMed  Google Scholar 

  83. Brown BA, Maher K, Flemister MR, Naraghi-Arani P, Uddin M, Oberste MS, Pallansch MA (2009) Resolving ambiguities in genetic typing of human enterovirus species C clinical isolates and identification of enterovirus 96, 99 and 102. J Gen Virol 90:1713–1723. https://doi.org/10.1099/vir.0.008540-0

    Article  CAS  PubMed  Google Scholar 

  84. Oberste MS, Feeroz MM, Maher K, Nix WA, Engel GA, Begum S, Hasan KM, Oh G, Pallansch MA, Jones-Engel L (2013) Naturally acquired picornavirus infections in primates at the Dhaka zoo. J Virol 87:572–580. https://doi.org/10.1128/JVI.00838-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Muslin C, Mac Kain A, Bessaud M, Blondel B, Delpeyroux F (2019) Recombination in enteroviruses, a multi-step modular evolutionary process. Viruses 11:859. https://doi.org/10.3390/v11090859

    Article  CAS  PubMed Central  Google Scholar 

  86. Simmonds P, Welch J (2006) Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 80:483–493. https://doi.org/10.1128/JVI.80.1.483-493.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kyriakopoulou Z, Pliaka V, Amoutzias GD, Markoulatos P (2015) Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus Genes 50:177–188. https://doi.org/10.1007/s11262-014-1152-y

    Article  CAS  PubMed  Google Scholar 

  88. Combelas N, Holmblat B, Joffret ML, Colbere-Garapin F, Delpeyroux F (2011) Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence. Viruses 3:1460–1484. https://doi.org/10.3390/v3081460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Smura T, Blomqvist S, Vuorinen T, Ivanova O, Samoilovich E, Al-Hello H, Savolainen-Kopra C, Hovi T, Roivainen M (2014) Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99. PLoS ONE 9:e94579. https://doi.org/10.1371/journal.pone.0094579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zhang Y, Yan D, Zhu S, Nishimura Y, Ye X, Wang D, Jorba J, Zhu H, An H, Shimizu H, Kew O, Xu W (2015) An insight into recombination with Enterovirus Species C and nucleotide G-480 reversion from the viewpoint of neurovirulence of vaccine-derived polioviruses. Sci Rep 5:17291. https://doi.org/10.1038/srep17291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brouwer L, Benschop KSM, Nguyen D, Kamau E, Pajkrt D, Simmonds P, Wolthers KC (2020) Recombination analysis of non-poliovirus members of the enterovirus C species; restriction of recombination events to members of the same 3DPol cluster. Viruses 12:706. https://doi.org/10.3390/v12070706

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Dong Liu and Prof. Hui Hu for their help with revision.

Funding

This research was funded by the Key Scientific and Technological Research Projects of Henan Province (grant no. 212102310335 and 222102310641).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Ling Tao; resources, Xubo Luan; methodology, Li Zhang, Ling Tao, Pengwei Xu, and Yinbiao Wang; software, Liang Yi, Li Zhang, and Ling Tao; investigation, Liang Yi, Linlin Feng, Xubo Luan, and Ling Tao; validation, Qian Zhao and Pengwei Xu; formal analysis, Li Zhang and Yinbiao Wang; data curation, Liang Yi, Linlin Feng, and Ling Tao; writing—original draft preparation, Liang Yi, Ling Tao, and Li Zhang; writing—review and editing, Qian Zhao, Pengwei Xu, Yinbiao Wang, and Weidong Wu; visualization, Ling Tao and Li Zhang; supervision, Ling Tao and Weidong Wu; project administration, Yinbiao Wang, Ling Tao, and Weidong Wu; funding acquisition, Yinbiao Wang and Ling Tao. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ling Tao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Xinxiang Medical University (permission no.: XYLL-2018-B015, date of approval: March 2019). The human materials used in this study were stool samples collected from children with HFMD by Xinxiang Center for Disease Control and Prevention. The routine monitoring procedures used to test the samples were performed following the approved guidelines and without accessing the other medical data of the HFMD cases except for those in the National Notifiable Disease Report System (NNDRS), so the requirement for informed consent was waived.

Additional information

Handling Editor: Tim Skern.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L., Zhang, L., Feng, L. et al. Genomic analysis of a recombinant coxsackievirus A19 identified in Xinxiang, China, in 2019. Arch Virol 167, 1405–1420 (2022). https://doi.org/10.1007/s00705-022-05433-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-022-05433-7

Navigation