Skip to main content

Advertisement

Log in

Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC

  • Original Article
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

In the course of hepatitis A virus (HAV) infections, the seven nonstructural proteins and their intermediates are barely detectable. Therefore, little is known about their functions and mechanisms of action. Ectopic expression of the presumably membrane-associated proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC allowed the intracellular localization of these proteins and their possible function during the replication cycle of HAV to be investigated. In this study, we used rhesus monkey kidney cells, which are commonly used for cell culture experiments, and human liver cells, which are the natural target cells. We detected specific associations of these proteins with distinct membrane compartments and the cytoskeleton, different morphological alterations of the respective structures, and specific effects on cellular functions. Besides comparable findings in both cell lines used with regard to localization and effects of the proteins examined, we also found distinct differences. The data obtained identify so far undocumented interactions with and effects of the HAV proteins investigated on cellular components, which may reflect unknown aspects of the interaction of HAV with the host cell, for example the modification of the ERGIC (ER-Golgi intermediate compartment) structure, an interaction with lipid droplets and lysosomes, and inhibition of the classical secretory pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dotzauer A (2014) Hepatitis A Virus. Ref Modul Biomed Sci. doi:10.1016/B978-0-12-801238-3.02581-2

    Google Scholar 

  2. Gust ID, Feinstone SM (1988) Hepatitis A. CRC Press, Boca Raton

    Google Scholar 

  3. Dotzauer A, Gebhardt U, Bieback K et al (2000) Hepatitis A virus-specific immunoglobulin A mediates infection of hepatocytes with hepatitis A virus via the asialoglycoprotein receptor. J Virol 74:10950–10957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bergmann EM, Mosimann SC, Chernaia MM et al (1997) The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J Virol 71:2436–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Graff J, Richards OC, Swiderek KM et al (1999) Hepatitis A virus capsid protein VP1 has a heterogeneous C terminus. J Virol 73:6015–6023

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin A, Bénichou D, Chao SF et al (1999) Maturation of the hepatitis A virus capsid protein VP1 is not dependent on processing by the 3Cpro proteinase. J Virol 73:6220–6227

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Martin A, Escriou N, Chao SF et al (1995) Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein: functional impact on the infectivity of HAV RNA transcripts. Virology 213:213–222. doi:10.1006/viro.1995.1561

    Article  CAS  PubMed  Google Scholar 

  8. Probst C, Jecht M, Gauss-Müller V (1998) Processing of proteinase precursors and their effect on hepatitis A virus particle formation. J Virol 72:8013–8020

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schultheiss T, Kusov YY, Gauss-Müller V (1994) Proteinase 3C of hepatitis A virus (HAV) cleaves the HAV polyprotein P2-P3 at all sites including VP1/2A and 2A/2B. Virology 198:275–281

    Article  CAS  PubMed  Google Scholar 

  10. Gosert R, Egger D, Bienz K (2000) A cytopathic and a cell culture adapted hepatitis A virus strain differ in cell killing but not in intracellular membrane rearrangements. Virology 266:157–169. doi:10.1006/viro.1999.0070

    Article  CAS  PubMed  Google Scholar 

  11. Jecht M, Probst C, Gauss-Müller V (1998) Membrane permeability induced by hepatitis A virus proteins 2B and 2BC and proteolytic processing of HAV 2BC. Virology 252:218–227. doi:10.1006/viro.1998.9451

    Article  CAS  PubMed  Google Scholar 

  12. Teterina NL, Bienz K, Egger D et al (1997) Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology 237:66–77. doi:10.1006/viro.1997.8775

    Article  CAS  PubMed  Google Scholar 

  13. Emerson SU, Huang YK, Purcell RH (1993) 2B and 2C mutations are essential but mutations throughout the genome of HAV contribute to adaptation to cell culture. Virology 194:475–480

    Article  CAS  PubMed  Google Scholar 

  14. Paulmann D, Magulski T, Schwarz R et al (2008) Hepatitis A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. J Gen Virol 89:1593–1604. doi:10.1099/vir.0.83521-0

    Article  CAS  PubMed  Google Scholar 

  15. Garriga D, Vives-Adrián L, Buxaderas M et al (2011) Cloning, purification and preliminary crystallographic studies of the 2AB protein from hepatitis A virus. Acta Crystallogr Sect F Struct Biol Cryst Commun 67:1224–1227. doi:10.1107/S1744309111026261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vives-Adrián L, Garriga D, Buxaderas M et al (2015) Structural basis for host membrane remodeling induced by protein 2B of hepatitis A virus. J Virol 89:3648–3658. doi:10.1128/JVI.02881-14

    Article  PubMed  PubMed Central  Google Scholar 

  17. De Jong AS, de Mattia F, Van Dommelen MM et al (2008) Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J Virol 82:3782–3790. doi:10.1128/JVI.02076-07

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kusov YY, Probst C, Jecht M et al (1998) Membrane association and RNA binding of recombinant hepatitis A virus protein 2C. Arch Virol 143:931–944

    Article  CAS  PubMed  Google Scholar 

  19. Ciervo A, Beneduce F, Morace G (1998) Polypeptide 3AB of hepatitis A virus is a transmembrane protein. Biochem Biophys Res Commun 249:266–274. doi:10.1006/bbrc.1998.9121

    Article  CAS  PubMed  Google Scholar 

  20. Porter AG (1993) Picornavirus nonstructural proteins: emerging roles in virus replication and inhibition of host cell functions. J Virol 67:6917–6921

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang Y, Liang Y, Qu L et al (2007) Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci USA 104:7253–7258. doi:10.1073/pnas.0611506104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cohen JI, Ticehurst JR, Purcell RH et al (1987) Complete nucleotide sequence of wild-type hepatitis A virus: comparison with different strains of hepatitis A virus and other picornaviruses. J Virol 61:50–59

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kabeya Y, Mizushima N, Ueno T et al (2000) LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 19:5720–5728. doi:10.1093/emboj/19.21.5720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Presley JF, Cole NB, Schroer TA et al (1997) ER-to-Golgi transport visualized in living cells. Nature 389:81–85. doi:10.1038/38001

    Article  CAS  PubMed  Google Scholar 

  25. Doedens JR, Kirkegaard K (1995) Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A. EMBO J 14:894–907

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Beske O, Reichelt M, Taylor MP et al (2007) Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex. J Cell Sci 120:3207–3218. doi:10.1242/jcs.03483

    Article  CAS  PubMed  Google Scholar 

  27. Choe SS, Dodd DA, Kirkegaard K (2005) Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology 337:18–29. doi:10.1016/j.virol.2005.03.036

    Article  CAS  PubMed  Google Scholar 

  28. Barlowe C, Orci L, Yeung T et al (1994) COPII: a membrane coat formed by Sec proteins that drive vesicle budding from the endoplasmic reticulum. Cell 77:895–907

    Article  CAS  PubMed  Google Scholar 

  29. Balch WE, McCaffery JM, Plutner H, Farquhar MG (1994) Vesicular stomatitis virus glycoprotein is sorted and concentrated during export from the endoplasmic reticulum. Cell 76:841–852

    Article  CAS  PubMed  Google Scholar 

  30. Bannykh SI, Rowe T, Balch WE (1996) The organization of endoplasmic reticulum export complexes. J Cell Biol 135:19–35

    Article  CAS  PubMed  Google Scholar 

  31. Hirschberg K, Lippincott-Schwartz J (1999) Secretory pathway kinetics and in vivo analysis of protein traffic from the Golgi complex to the cell surface. FASEB J 13(Suppl 2):S251–S256

    CAS  PubMed  Google Scholar 

  32. Dotzauer A, Feinstone SM, Kaplan G (1994) Susceptibility of nonprimate cell lines to hepatitis A virus infection. J Virol 68:6064–6068

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Vallbracht A, Hofmann L, Wurster KG, Flehmig B (1984) Persistent infection of human fibroblasts by hepatitis A virus. J Gen Virol 65:609–615

    Article  PubMed  Google Scholar 

  34. Gauss-Müller V, Deinhardt F (1984) Effect of hepatitis A virus infection on cell metabolism in vitro. Proc Soc Exp Biol Med 175:10–15

    Article  PubMed  Google Scholar 

  35. Anderson DA (1987) Cytopathology, plaque assay, and heat inactivation of hepatitis A virus strain HM175. J Med Virol 22:35–44

    Article  CAS  PubMed  Google Scholar 

  36. Rueckert RR (1990) Virology, 2nd edn. Raven Press, New York

    Google Scholar 

  37. Gauss-Müller V, Lottspeich F, Deinhardt F (1986) Characterization of hepatitis A virus structural proteins. Virology 155:732–736

    Article  PubMed  Google Scholar 

  38. Updike WS, Tesar M, Ehrenfeld E (1991) Detection of hepatitis A virus proteins in infected BS-C-1 cells. Virology 185:411–418

    Article  CAS  PubMed  Google Scholar 

  39. Van Kuppeveld FJ, Galama JM, Zoll J, Van Den Hurk PJ (1996) Coxsackie B3 virus protein 2B contains cationic amphipathic helix that is required for viral RNA replication. J Virol 70:3876–3886

    Google Scholar 

  40. Cheung W, Gill M, Esposito A et al (2010) Rotaviruses associate with cellular lipid droplet components to replicate in viroplasms, and compounds disrupting or blocking lipid droplets inhibit viroplasm formation and viral replication. J Virol 84:6782–6798. doi:10.1128/JVI.01757-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Miyanari Y, Atsuzawa K, Usuda N et al (2007) The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097. doi:10.1038/ncb1631

    Article  CAS  PubMed  Google Scholar 

  42. Samsa MM, Mondotte JA, Iglesias NG et al (2009) Dengue virus capsid protein usurps lipid droplets for viral particle formation. PLoS Pathog. doi:10.1371/journal.ppat.1000632

    PubMed  PubMed Central  Google Scholar 

  43. Shum HC, Lee D, Yoon I et al (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653. doi:10.1021/la801833a

    Article  CAS  PubMed  Google Scholar 

  44. Bienz K, Egger D, Pasamontes L (1987) Association of polioviral proteins of the P2 genomic region with the viral replication complex and virus-induced membrane synthesis as visualized by electron microscopic immunocytochemistry and autoradiography. Virology 160:220–226

    Article  CAS  PubMed  Google Scholar 

  45. Suhy DA, Giddings TH, Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Egger D, Teterina N, Ehrenfeld E, Bienz K (2000) Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J Virol 74:6570–6580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jackson WT, Giddings TH, Taylor MP et al (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:861–871. doi:10.1371/journal.pbio.0030156

    Article  CAS  Google Scholar 

  48. Egger D, Wölk B, Gosert R et al (2002) Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 76:5974–5984. doi:10.1128/JVI.76.12.5974-5984.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dunn WA (1990) Studies on the mechanisms of autophagy: formation of the autophagic vacuole. J Cell Biol 110:1923–1933

    Article  PubMed  Google Scholar 

  50. Siegl G, Weitz M, Kronauer G (1984) Stability of hepatitis A virus. Intervirology 22:218–226

    Article  CAS  PubMed  Google Scholar 

  51. Seggewiß N, Paulmann D, Dotzauer A (2015) Lysosomes serve as a platform for hepatitis A virus particle maturation and nonlytic release. Arch Virol. doi:10.1007/s00705-015-2634-5

    Google Scholar 

  52. Morace G, Kusov Y, Dzagurov G et al (2008) The unique role of domain 2A of the hepatitis A virus precursor polypeptide P1-2A in viral morphogenesis. BMB Rep 41:678–683

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grant BFK-no. 02/803/08 of the University of Bremen, Bremen, Germany, and by the Tönjes-Vagt-Stiftung, Project XXIX, Bremen, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajana Paulmann.

Ethics declarations

Funding

This study was funded by BFK of the University of Bremen, Bremen, Germany (Grant number 02/803/08), and by the Tönjes-Vagt-Stiftung, Bremen, Germany (Grant number XXIX).

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seggewiß, N., Kruse, H.V., Weilandt, R. et al. Cellular localization and effects of ectopically expressed hepatitis A virus proteins 2B, 2C, 3A and their intermediates 2BC, 3AB and 3ABC. Arch Virol 161, 851–865 (2016). https://doi.org/10.1007/s00705-015-2723-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-015-2723-5

Keywords

Navigation