Skip to main content

Advertisement

Log in

El Niño flavors, their interdecadal changes, and impacts on the Indian Ocean Dipole pattern

  • Research
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

El Niño events display a large diversity in terms of spatial pattern, temporal evolution, and amplitude, which may change over time due to climate change or internal variability. We used the Extended Reconstructed Sea Surface Temperature (SST), version 5 (ERSSTv5) dataset and applied a nonlinear K-means cluster analysis to the evolution of SST anomalies in the equatorial Pacific for 33 El Niño years from 1901 to 2020. Based on the analysis of the spatio-temporal evolution of El Niño events, we identified 4 types of El Niño, which include basin-wide, eastern Pacific (EP), central Pacific (CP), and successive El Niño. EP and CP El Niño events are weaker and terminate faster than basin-wide El Niño, whereas successive El Niño events are often (83\(\%\)) followed by a La Niña event. The frequency of basin-wide and particularly CP El Niño events has started to increase since the mid-1950s, while a gradual decrease in the frequency of both EP and successive El Niño is identified during the study period. We have analyzed the linkage between the identified 4 types of El Niño and the Indian Ocean Dipole (IOD). A statistically significant positive correlation is found between basin-wide El Niño and the IOD in boreal autumn, implying that a developing basin-wide El Niño generally can trigger a positive IOD in boreal autumn. Our results have important implications for a better understanding of interdecadal changes in the type of El Niño events and provide a framework to improve the predictability of the IOD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

We obtained the ERSSTv5 data from https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html.

Code availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request

References

  • Alizadeh O (2022) Amplitude, duration, variability, and seasonal frequency analysis of the El Niño-Southern Oscillation. Clim Change 174:20

  • Alizadeh O, Qadimi M, Zolghadrshojaee M, Irannejad P (2022) Frequency of different types of El Niño events under global warming. Int J Climatol 42:9697–9709

    Article  Google Scholar 

  • Alizadeh-Choobari O (2017) Contrasting global teleconnection features of the eastern Pacific and central Pacific El Niño events. Dyn Atmos Oceans 80:139–154

    Article  Google Scholar 

  • Alizadeh-Choobari O, Najafi MS (2018) Climate variability in Iran in response to the diversity of the El Niño-Southern Oscillation. Int J Climatol 38:4239–4250

    Article  Google Scholar 

  • Alizadeh-Choobari O, Adibi P, Irannejad P (2018) Impact of the El Niño-Southern Oscillation on the climate of Iran using ERA-Interim data. Clim Dyn 51:2897–2911

    Article  Google Scholar 

  • Annamalai H, Xie SP, McCreary JP, Murtugudde R (2005) Impact of Indian Ocean sea surface temperature on developing El Niño. J Clim 18:302–319

    Article  Google Scholar 

  • Ashok STPK, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett 39:L02,701

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newmaman M, Lorenzo ED, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh SW (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Kug TK J S, McPhaden MJ (2020) ENSO diversity. In Santoso A, McPhaden M Cai W (eds) El Niño Southern Oscillation in a changing climate. Geophysical Monograph Series pp 65–86 Washington, DC: American Geophysical Union ISBN: 978-1-119-54812-6

  • Chen D, Lian T, Fu C, Cane MA, Tang Y, Murtugudde R, Song X, Wu Q, Zhou L (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345

    Article  CAS  Google Scholar 

  • Choi J, An SI, Kug JS, Yeh SW (2011) The role of mean state on changes in El Niño’s flavor. Clim Dyn 37:1205–1215

    Article  Google Scholar 

  • Chung PH, Li T (2013) Interdecadal relationship between the mean state and El Niño type. J Clim 26:361–379

    Article  Google Scholar 

  • Freund MB, Henley BJ, Karoly DJ, McGregor HV, Abram NJ, Dommenget D (2019) Higher frequency of Central Pacific El Niño events in recent decades relative to past centuries. Nat Geosci 12:450–455

    Article  CAS  Google Scholar 

  • Garreaud RD (2018) A plausible atmospheric trigger for the 2017 coastal El Niño. Int J Climatol 38:e1296–e31,302

  • Hu H, Wu Q, Wu Z (2018) Influences of two types of El Niño event on the Northwest Pacific and tropical Indian Ocean SST anomalies. J Oceanology Limnology 36:33–47

    Article  Google Scholar 

  • Hu S, Fedorov AV (2018) Cross-equatorial winds control El Niño diversity and change. Nat Clim Change 8:792–802

    Article  Google Scholar 

  • Huang B, Thorne PW, Banzon VF, Boyer T, Chepurin G, Lawrimore JH, Menne MJ, Smith TM, Vose RS, Zhang HM (2017) Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J Clim 30:8179–8205

    Article  Google Scholar 

  • Huang B, L’Heureux M, Hu ZZ, Yin X, Zhang HM (2020) How significant was the 1877/78 El Niño? J Clim 33:4853–4869

    Article  Google Scholar 

  • Jadhav J, Panickal S, Marathe S, Ashok K (2015) On the possible cause of distinct El Niño types in the recent decades. Sci Rep 5(17):009

    Google Scholar 

  • Jeong HI, Ahn JB (2017) A new method to classify ENSO events into eastern and central Pacific types. Int J Climatol 37:2193–2199

    Article  Google Scholar 

  • Jin FF, Kim ST, Bejarano LA (2006) A coupled-stability index for ENSO. Geophys Res Lett 33(L23):708

    Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement AC, Blumenthal MB, Rajagopalan B (1998) Analyses of global sea surface temperature 1856-1991. J Geophys Res: Oceans 103:18,567–18,589

  • Kaufman L, Rousseeuw PJ (2009) Finding groups in data: An introduction to cluster analysis. John Wiley & Sons, New York

    Google Scholar 

  • Kug JS, Ham YG (2011) Are there two types of La Niña? Geophys Res Lett 38(L16):704

    Google Scholar 

  • Kug JS, Jin FF, An SI (2009) Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kumar KK, Rajagopalan B, Hoerling M, Bates G, Cane M (2006) Unraveling the mystery of Indian monsoon failure during El Niño. Science 314:115–119

    Article  CAS  Google Scholar 

  • Larkin NK, Harrison DE (2005) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32(L16):705

    Google Scholar 

  • Le T, Ha KJ, Bae DH, Kim SH (2020) Causal effects of Indian Ocean Dipole on El Niño-Southern Oscillation during 1950-2014 based on high-resolution models and reanalysis data. Environ Res Lett 15:1040b6

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37(L14):603

    Google Scholar 

  • Lengaigne M, Boulanger JP, Menkes C, Spencer H (2006) Influence of the seasonal cycle on the termination of El Niño events in a coupled general circulation model. J Clim 19:1850–1868

    Article  Google Scholar 

  • Lübbecke J, McPhaden MJ (2014) Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J Clim 27:2577–2587

    Article  Google Scholar 

  • McPhaden MJ, Lee T, McClurg D (2011) El Niño and its relationship to changing background conditions in the tropical Pacific. Geophys Res Lett 38(L15):709

    Google Scholar 

  • Newman M, Alexander MA, Ault TR, Cobb KM, Deser C, Lorenzo ED, Mantua NJ, Miller AJ, Minobe S, Nakamura H, Schneider N, Vimont DJ, Phillips AS, Scott JD, Smith CA (2016) The Pacific Decadal Oscillation, revisited. J Clim 29:4399–4427

    Article  Google Scholar 

  • Qadimi M, Alizadeh O, Irannejad P (2021) Impacts of the El Niño-Southern Oscillation on the strength and duration of the Indian summer monsoon. Meteorol Atmos Phys 133:553–564

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Ren HL, Jin FF (2011) Niño indices for two types of ENSO. Geophys Res Lett 38(L04):704

    Google Scholar 

  • Ren HL, Wang R (2020) Distinctgrowth rates of the two ENSO types. Geophys Res Lett 47:e2020GL088,179

  • Ren HL, Wang R (2023) Diagnosing the linear periodicity dynamics of ENSO for its two spatiotemporal modes. Geophys Res Lett 50:e2023GL105,756

  • Ren HL, Lu B, Wan J, Tian B, Zhang P (2018) Identification standard for ENSO events and its application to climate monitoring and prediction in China. J Meteorol Res 32:923–936

    Article  Google Scholar 

  • Ren HL, Scaife AA, Dunstone N, Tian B, Liu Y, Ineson S, Lee JY, Smith D, Liu C, Thompson V, Vellinga M, MacLachlan C (2019) Seasonal predictability of winter ENSO types in operational dynamical model predictions. Clim Dyn 52:3869–3890

    Article  Google Scholar 

  • Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948

    Article  Google Scholar 

  • Sahastrabuddhe R, Ghausi SA, Joseph J, Ghosh S (2023) Indian Summer Monsoon Rainfall in a changing climate: a review. J Water Clim Change 14:1061–1088

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole in the tropical Indian Ocean. Nature 401:360–363

    Article  CAS  Google Scholar 

  • Takahashi K, Martinez AG (2019) The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim Dyn 52:7389–7415

    Article  Google Scholar 

  • Timmermann A, An SI, Kug JS, Jin FF, Cai W, Capotondi A, Cobb K, Lengaigne M, McPhaden MJ, Stuecker MF, Stein K, Wittenberg AT, Yun KS, Bayr T, Chen HC, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham YG, Hayashi M, Ineson S, Kang D, Kim S, Kim W, Lee JY, Li T, Luo JJ, McGregor S, Planton Y, Power S, Rashid H, Ren HL, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang WH, Yeh SW, Yoon J, Zeller E, Zhang X (2018) El Niño-Southern Oscillation complexity. Nature 559:535–545

  • Wang B, Luo X, Yang YM, Sun W, Cane MA, Cai W, Yeh SW, Liu J (2019) Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc Natl Acad Sci USA 116:22,512–22,517

  • Wang G, Hendon HH (2007) Sensitivity of Australian rainfall to inter-El Niño variations. J Clim 20:4211–4226

    Article  Google Scholar 

  • Wang R, Ren HL (2020) Understanding key roles of two ENSO modes in spatiotemporal diversity of ENSO. J Clim 33:6453–6469

    Article  Google Scholar 

  • Webster PJ, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–98. Nature 401:356–360

    Article  CAS  Google Scholar 

  • Wyrtki K (1975) El Niño: The dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–594

  • Yeh SW, Kug JS, An SI (2014) Recent progress on two types of El Niño: Observations, dynamics, and future changes. Asia-Pac J Atmos Sci 50:69–81

    Article  Google Scholar 

  • Yeh SW, Cai W, Min SK, McPhaden MJ, Dommenget D, Dewitte B, Collins M, Ashok K, An SI, Yim BY, Kug JS (2018) ENSO atmospheric teleconnections and their response to greenhouse gas forcing. Rev Geophys 56:185–206

    Article  Google Scholar 

  • Yu JY, Kim ST (2013) Identifying the types of major El Niño events since 1870. Int J Climatol 33:2105–2112

    Article  Google Scholar 

  • Yu JY, Kao PK, Paek H, Hsu HH, Hung CW, Lu MM, An SI (2015) Linking emergence of the Central Pacific El Niño to the Atlantic Multidecadal Oscillation. J Clim 28:651–662

    Article  Google Scholar 

  • Zhang L, Han W, Hu ZZ (2021) Interbasin and multiple-time-scale interactions in generating the 2019 extreme Indian Ocean Dipole. J Clim 34:4553–4566

    Google Scholar 

  • Zhang W, Wang Y, Jin FF, Stuecker MF, Turner AG (2015) Impact of different El Niño types on the El Niño/IOD relationship. Geophys Res Lett 42:8570–8576

    Article  Google Scholar 

Download references

Funding

This work has been financially supported by Iran National Science Foundation (INSF) under grant number 4014209.

Author information

Authors and Affiliations

Authors

Contributions

Omid Alizadeh: conceptualization, investigation, methodology, formal analysis, writing the initial and final draft, review and editing Morteza Qadimi: conceptualization, investigation, methodology, visualization

Corresponding author

Correspondence to Omid Alizadeh.

Ethics declarations

Conflict of interest/Competing interests

The authors declare no competing interests.

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

The authors consent to the publication of the manuscript, should the article be accepted by the Editor-in-chief upon completion of the refereeing process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alizadeh, O., Qadimi, M. El Niño flavors, their interdecadal changes, and impacts on the Indian Ocean Dipole pattern. Theor Appl Climatol (2024). https://doi.org/10.1007/s00704-024-04978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00704-024-04978-8

Navigation