Skip to main content

Advertisement

Log in

Simulation of Regional Climate over the Indian subcontinent through dynamical downscaling using WRF-ARW model

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Regional climate data for the Indian subcontinent is generated using the WRF (Weather Research and Forecasting) model for the current climate period 1976–2005. WRF model at 25-km resolution was run in climate mode driven by boundary conditions from the Community Climate System Model version4 (CCSM4)—Coupled Model Intercomparison Project 5 (CMIP5) outputs of the historical simulation. The model outputs were categorized for the four different seasons and validated through comparison with global analysis fields. Assessment of the model performance is done through comparison of the spatial distribution of temperature, pressure, geopotential, wind and rainfall. The simulation results show the distinct features of the atmospheric patterns corresponding to each of the four seasons. The reversal of the meridional temperature gradients over Indian subcontinent and north Indian Ocean between the winter and pre-monsoon seasons is accurately produced. All the distinct features of the winter and southwest monsoon and the transition seasons are well simulated. The simulated pre-monsoon heating and post-monsoon cooling over the land are in good agreement with the analysis. Simulation of the rainfall with the highest percentage of annual rainfall during the southwest monsoon season over central plains and during the post-monsoon season over the south peninsula authenticates the performance of the ARW (Advanced Research WRF) model in climate integrations. WRF model simulations of the 2-m temperature and rainfall on subregional scale for 30 subdivisions of the Indian subcontinent are found to be better than CCSM4. The WRF-generated regional climate data at 25 km for the Indian subcontinent agree with the analysis, which would be useful for agriculture and water resource management applications and as a reference data base for future climate studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data for forcing the model has been obtained from NCEP-RDA and ERA data from ECMWF, Reading and the rainfall data from India Meteorological Department, New Delhi, India.

Code availability

The WRF model code availability is from NCAR/NCEP, USA.

References

  • Afrizal T, Surussavadee C (2018) High-Resolution Climate Simulations in the Tropics with Complex Terrain Employing the CESM/WRF Model. Adv Meteorol 2018:5707819. https://doi.org/10.1155/2018/5707819

  • Ashfaq M, Shi Y, Tung WW, Trapp RJ, Gao XJ, Pal JS, Diffenbaugh NS (2009) Suppression of south Asian summer monsoon precipitation in the 21st century. Geophys Res Lett 36:L01704. https://doi.org/10.1029/2008gl036500

    Article  Google Scholar 

  • Ayugi B et al (2020) Quantile Mapping Bias Correction on Rossby Centre Regional Climate Models for Precipitation Analysis over Kenya, East Africa. Water (switzerland) 12:1–16. https://doi.org/10.3390/w12030801

    Article  Google Scholar 

  • Betts AK, Miller MJ (1986) A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic air-mass data sets. Q J R Meteorol Soc 112(473):693–709. https://doi.org/10.1002/qj.49711247308

    Article  Google Scholar 

  • Bhaskaran B, Jones RG, Murphy JM, Noguer M (1996) Simulations of the Indian summer monsoon using a nested regional climate model: domain size experiments. Clim Dyn 12(9):573–587

    Article  Google Scholar 

  • Bhaskar Rao DV, Ashok K, Yamagata T (2004) A numerical simulation study of the Indian Summer Monsoon of 1994 using NCAR MM5. J Meteorol Soc Jpn 82:1755–1775. https://doi.org/10.2151/jmsj.82.1755

    Article  Google Scholar 

  • Bruyère CL, Done JM, Holland GJ et al (2014) Bias corrections of global models for regional climate simulations of high-impact weather. Clim Dyn 43:1847–1856. https://doi.org/10.1007/s00382-013-2011-6

    Article  Google Scholar 

  • Caldwell P, Chin HS, Bader DC, Govindasamy B (2009) Evaluation of a WRF dynamical downscaling simulation over California. Clim Chang 95:499–521. https://doi.org/10.1007/s10584-009-9583-5

    Article  Google Scholar 

  • Caya D, Laprise R (1999) A semi-implicit, semi-Lagrangian regional climate model: The Canadian RCM. Mon Weather Rev 127:341–362

    Article  Google Scholar 

  • Cayan DR, Maurer EP, Dettinger MD, Tyree M, Hayhoe K (2008) Climate change scenarios for the California region. Clim Chang 87(S1):21–42. https://doi.org/10.1007/s10584-007-9377-6.clim_12_112.3204_3229

    Article  Google Scholar 

  • Chen X, Pauluis OM, Zhang F (2018) Regional simulation of Indian summer monsoon intra-seasonal oscillations at gray-zone resolution. Atmos Chem Phys 18(2):1003–1022. https://doi.org/10.5194/acp-18-1003-2018

    Article  Google Scholar 

  • Christensen JH, Machenhauer B, Jones RG, Schär C, Ruti PM, Castro M, Visconti G (1997) Validation of present day regional climate simulations over Europe: LAM simulations with observed boundary conditions. Clim Dyn 13(7–8):489–506. https://doi.org/10.1007/s003820050178

    Article  Google Scholar 

  • Dash SK, Shekhar MS, Singh GP (2006) Simulation of Indian summer monsoon circulation and rainfall using RegCM3. Theor Appl Climatol 86(1–4):161–172

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S et al (2011) The ERA-Interim reanalysis. Configuration and performance of the data assimilation system. InQ J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dickinson RE, Errico RM, Giorgi F, Bates GT (1989) A regional climate model for the western United States. Clim Change 15:383–422

    Google Scholar 

  • Dominguez C, Done JM, Bruyère CL (2019) Easterly wave contributions to seasonal rainfall over the tropical Americas in observations and a regional climate model. ClimDyn 54:191–209. https://doi.org/10.1007/s00382-019-04996-7

    Article  Google Scholar 

  • Fonseca R, Martín-Torres J (2019) High-resolution dynamical downscaling of re-analysis data over the Kerguelen Islands using the WRF model. Theor Appl Climatol 135:1259–1277. https://doi.org/10.1007/s00704-018-2438-0

    Article  Google Scholar 

  • Gao Y, Wang HJ, Jiang DB (2015) An intercomparison of CMIP5 and CMIP3 models for interannual variability of summer precipitation in pan-Asian monsoon region. Int J Climatol 35:3770–3780. https://doi.org/10.1002/joc.4245

    Article  Google Scholar 

  • Gao Y, Xiao L, Chen D, Chen F, Xu J, Xu Y (2017) Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Clim Dyn 48:1705–1721. https://doi.org/10.1007/s00382-016-3168-6

    Article  Google Scholar 

  • Gent PR, Danabasoglu G, Donner Leo J, Holland Marika M, Hunke Elizabeth C, Jayne Steve R et al (2011) The Community Climate System Model Version 4. In J Clilmate 24(19):4973–4991. https://doi.org/10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgi F (1990) Simulation of regional climate using a limited area model nested in a general circulation model. J Clim 3:941–963

    Article  Google Scholar 

  • Giorgi F (2019) Thirty years of regional climate modeling: Where are we and where are we going next? J Geophys Res Atmos 124:5696–5723. https://doi.org/10.1029/2018JD030094

    Article  Google Scholar 

  • Giorgi F, Bates GT (1989) The climatological skill of a regional model over complex terrain. Mon Weather Rev 117:2325–2347

    Article  Google Scholar 

  • Hong SY, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341

  • Hong S, Lim J (2006) The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). J Korean Meteorol Soc 42:129–151

    Google Scholar 

  • Hari Prasad D, Wibig J, RepazM, (2010) Numerical modeling of the severe cold weather event over Central Europe. Adv Meteorol 619478:15

    Google Scholar 

  • Hari Prasad D, Salgado R, Perdigao J and Srinivas CV (2014): A Regional Climate Simulation Study Using WRFARW Model over Europe and Evaluation for Extreme Temperature Weather Events. Int J Atmos Sci, 2014, Article ID: 704079. https://doi.org/10.1155/2014/704079

  • Heikkilä U, Sandvik A, Sorteberg A (2011) Dynamical downscaling of ERA-40 in complex terrain using the WRF regional climate model. Clim Dyn 37(7–8):1551–1564. https://doi.org/10.1007/s00382-010-0928-6

    Article  Google Scholar 

  • Hirakuchi H, Giorgi F (1995) Multiyear present day and 2XCO2 simulations of monsoon-dominated climate over Eastern Asia and Japan with a regional climate model nested in a general circulation model. J Geophys Res 100:21105–21126. https://doi.org/10.1029/95JD01885

    Article  Google Scholar 

  • Holland GJ, Done JM, Bruye`re CL, Cooper C, Suzuki A (2010) Model investigations of the effects of climate variability and change on future Gulf of Mexico Tropical Cyclone Activity. Paper OTC 20690 presented at the Offshore Technology Conference, Houston, Texas, 3–6 May

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J Geophys Res 113:D13103. https://doi.org/10.1029/2008JD009944

    Article  Google Scholar 

  • ul Islam S, Tang Y, Jackson PL (2013) Asian monsoon simulations by Community Climate Models CAM4 and CCSM4. Clim Dyn 41(9–10):2617–2642. https://doi.org/10.1007/s00382-013-1752-6

    Article  Google Scholar 

  • Janjic ZI (2000) Comments on development and evaluation of a convection scheme for use in climate models. J Atmos Sci 57:3686

    Article  Google Scholar 

  • Jones RG, Murphy JM, Noguer M (1995) Simulations of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of lateral boundaries. Q J R Meteorol Soc 121:1413–1449

    Google Scholar 

  • Jones RG, Murphy JM, Noguer M, Keen AB (1997) Simulation of climate change over Europe using a nested regional climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide. Q J R Meteorol Soc 123:265–292

    Google Scholar 

  • Andrys J, Thomas L, Jatin K (2015) Multidecadal Evaluation of WRF Downscaling Capabilities over Western Australia in Simulating Rainfall and Temperature Extremes. J Appl Meteorol Climatol 54:370–394. https://doi.org/10.1175/JAMC-D-14-0212.1

    Article  Google Scholar 

  • Jyoti B, Unnikrishnan CK, Rajeevan M (2012) Regional climate model simulations of the 2009 Indian summer monsoon. Indian J Radio Space Phys 41:488–500

    Google Scholar 

  • Kida H, Koide T, Sasaki H, Chiba M (1991) A new approach for coupling a limited area model to a GCM for regional climate simulations. J Meteorol Soc Japan 69:723–728

    Article  Google Scholar 

  • Kishore P, Jyothi S, Ghouse B, Rao SV, Rajeevan M, Velicogna I, Sutterley TC (2015) Precipitation climatology over India. Validation with observations and reanalysis datasets and spatial trends. Clim Dyn 46(1–2):541–556. https://doi.org/10.1007/s00382-015-2597-y

    Article  Google Scholar 

  • Knist S, Goergen K and Simmer C (2018) Evaluation and projected changes of precipitation statistics in convection-permitting WRF climate simulations over Central Europe. Clim Dyn 419, p. 224. https://doi.org/10.1007/s00382-018-4147-x

  • Kothawale DR and Rajeevan M (2017) Monthly, Seasonal and Annual rainfall time series for all-India, Homogeneous regions and meteorological subdivisions: 1871–2016, IITM Research Report no.RR-138

  • Kumar P, Kaur S, Weller E, Min S-K (2019) Influence of natural climate variability on the extreme ocean surface wave heights over the Indian Ocean. J Geophys Res Ocean 124(8):6176–6199

    Article  Google Scholar 

  • Leung RL and Qian Y (2009): Atmospheric rivers induced heavy precipitation and flooding in the western U.S. simulated by the WRF regional climate model. Geophys Res Lett 36 (3), n/a-n/a. https://doi.org/10.1029/2008GL036445

  • Liang X-Z, Kunkel KE, Meehl GA, Jones RG, Wang JXL (2008) Regional climate models downscaling analysis of general circulation models present climate biases propagation into future change projections. Geophys Res Lett 35:L08709. https://doi.org/10.1029/2007GL032849

    Article  Google Scholar 

  • Liou KN, Gu Y, Leung LR, Lee WL, Fovell RG (2013) A WRF simulation of the impact of 3-D radiative transfer on surface hydrology over the Rocky Mountains and Sierra Nevada. Atmos Chem Phys 13(23):11709–11721. https://doi.org/10.5194/acp-13-11709-2013

    Article  Google Scholar 

  • Liu C, Ikeda K, Rasmussen R, Barlage M, Newman AJ, Prein AF et al (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49(1–2):71–95. https://doi.org/10.1007/s00382-016-3327-9

    Article  Google Scholar 

  • Lynch AH, Chapman WL, Walsh JE, Weller G (1995) Development of a regional climate model of the western Arctic. J Clim 8:1555–1570

    Article  Google Scholar 

  • Ma J, Wang H, Fan K (2015) Dynamic downscaling of summer precipitation prediction over China in 1998 using WRF and CCSM4. Adv Atmos Sci 32(5):577–584. https://doi.org/10.1007/s00376-014-4143-y

    Article  Google Scholar 

  • Machenhauer B, Windelband M, Botzet M, Christensen JH, Déqué M, Jones RG et al (1998) Validation and analysis of regional present day climate and climate change simulations over Europe. MPI Report No.275, MPI, Hamburg, Germany, 58 pp

  • Mahmood S, Davie J, Jermey P, Renshaw R, George JP, Rajagopal EN, Rani Indira S (2018) Indian monsoon data assimilation and analysis regional reanalysis. Configuration and performance. InAtmos Sci Lett 19(3):e808. https://doi.org/10.1002/asl.808

    Article  Google Scholar 

  • Maity S, Satyanarayana ANV, Mandal M, Nayak S (2017) Performance evaluation of land surface models and cumulus convection schemes in the simulation of Indian summer monsoon using a regional climate model. Atmos Res. https://doi.org/10.1016/j.atmosres.2017.06.023

    Article  Google Scholar 

  • Mandal R, Joseph S, Sahai AK et al (2019) Real time extended range prediction of heat waves over India. Sci Rep 9:9008. https://doi.org/10.1038/s41598-019-45430-6

    Article  Google Scholar 

  • Maurya RK, Sinha SP, Mohanty MR, Mohanty UC (2018) RegCM4 model sensitivity to horizontal resolution and domain size in simulating the Indian summer monsoon. Atmos Res 210:15–33

    Article  Google Scholar 

  • McGregor JL, Katzfey JJ (1997) Climate modeling for the Australian region using DARLAM. In Proceedings of the International Workshop on Regional Modeling of the "General Monsoon System" in Asia (pp. 13–18). Beijing, China: START‐TEA

  • Meyer JDD, Jin J (2017) The response of future projections of the North American monsoon when combining dynamical downscaling and bias correction of CCSM4 output. Clim Dyn 49(1–2):433–447. https://doi.org/10.1007/s00382-016-3352-8

    Article  Google Scholar 

  • Mishra V et al (2017): Heat wave exposure in India in current, 1.5 C, and 2.0 C worlds." Environ Res Lett 12.12 124012.

  • Monaghan AJ, Steinhoff DF, Bruyere CL and Yates D (2014) NCAR CESM Global Bias-Corrected CMIP5 Output to Support WRF/MPAS Research. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.https://doi.org/10.5065/D6DJ5CN4 Accessed 17 Jul 2019

  • Mukhopadhyay P, Taraphdar S, Goswami BN, Krishnakumar K (2010) Indian summer monsoon precipitation climatology in a high-regional climate model: impacts of convective parameterization on systematic biases. Weather Forecast 25:369–387

    Article  Google Scholar 

  • Nageswararao MM, Mohanty UC, Kiran Prasad S, Osuri KK, Ramakrishna SSVS (2015) Performance evaluation of NCEP Climate Forecast System for the prediction of Winter Temperatures over India. Theor Appl Climatol 121(3):1–15. https://doi.org/10.1007/s00704-015-1858-6

    Article  Google Scholar 

  • Nageswararao MM, Mohanty UC, Ramakrishna SSVS, Dimri AP (2017) An Intercomparision of observational precipitation datasets over Northwest India during winter. Theoret Appl Climatol. https://doi.org/10.1007/s00704-017-2083-z

    Article  Google Scholar 

  • Nastos PT, Kapsomenakis J (2015) Regional climate model simulations of extreme air temperature in Greece. Abnormal or common records in the future climate? Atmos Res 152:43–60

    Article  Google Scholar 

  • Nayak HP, Osuri KK, Palash S, Raghu N, Mohanty UC, Fei C et al (2018) High-resolution gridded soil moisture and soil temperature datasets for the Indian monsoon region. Sci Data 5:180264. https://doi.org/10.1038/sdata.2018.264

    Article  Google Scholar 

  • Neale RB, Richter JH, Jochum M (2008) The impact of convection on ENSO: From a delayed oscillator to a series of events. J Climate 21:5904–5924

    Article  Google Scholar 

  • Niu X, Wang S, Tang J, Lee DK, Gutowski W, Dairaku K, McGregor J, Katzfey J, Gao X, Wu J, Hong S (2015) Projection of Indian summer monsoon climate in 2041–2060 by multiregional and global climate models. J Geophys Res 120(5):1776–1793

    Article  Google Scholar 

  • Niu GY, Yang ZL, Mitchell KE, Chen F, Ek MB, Barlage M, Manning K (2011) The community Noah land surface model with multi parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J Geophys Res 116:D12109. https://doi.org/10.1029/2010JD015139

    Article  Google Scholar 

  • Oldenborgh V, Philip GJ, Kew S, Weele SV, Uhe M, Otto P, AchutaRao K (2018) Extreme heat in India and anthropogenic climate change. Nat Hazard 18(1):365–381. https://doi.org/10.5194/nhess-18-365-2018

    Article  Google Scholar 

  • Pai DS, Sridhar Latha, Badwaik MR, Rajeevan M (2014): Analysis of the daily rainfall events over India using a new long period (1901–2010) high resolution (0.25° × 0.25°) gridded rainfall data set. In ClimDyn45 (3–4), pp. 755–776. https://doi.org/10.1007/s00382-014-2307-1

  • Pattnayak KC, Panda SK, Saraswat V et al (2018) Assessment of two versions of regional climate model in simulating the Indian Summer Monsoon over South Asia CORDEX domain. Clim Dyn 50:3049–3061. https://doi.org/10.1007/s00382-017-3792-9

    Article  Google Scholar 

  • Pavelsky TM, Kapnick S, Hall A (2011) Accumulation and melt dynamics of snowpack from a multi resolution regional climate model in the central Sierra Nevada, California. J Geophys Res 116(D16):435. https://doi.org/10.1029/2010JD015479

    Article  Google Scholar 

  • Pavelsky TM, Sobolowski S, Kapnick SB, Barnes JB (2012) Changes in orographic precipitation patterns caused by a shift from snow to rain. Geophys Res Lett 39(18):479. https://doi.org/10.1029/2012GL052741

    Article  Google Scholar 

  • Plummer DA et al (2006) Climate and Climate Change over North America as Simulated by the Canadian RCM. J Climate 19:3112–3132. https://doi.org/10.1175/JCLI3769.1

    Article  Google Scholar 

  • Polanski S, Rinke A and Dethloff K. (2010) Validation of the HIRHAM-simulated Indian summer monsoon circulation. Adv Meteorol 2010: Article ID 415632, 14

  • Qian, Yun; Ghan, Steven J.; Leung, L. Ruby (2009): Downscaling hydroclimatic changes over the Western US based on CAM subgrid scheme and WRF regional climate simulations. Int J Climatol 19 (11), n/a-n/a. https://doi.org/10.1002/joc.1928

  • Raghavan SV, Vu MT, Liong SY (2016) Regional climate simulations over Vietnam using the WRF model. Theor Appl Climatol 126:161–182. https://doi.org/10.1007/s00704-015-1557-0

    Article  Google Scholar 

  • Ratna SB, Ratnam JV, Behera SK, Tangang FT, Yamagata T (2017) Validation of the WRF regional climate model over the subregions of Southeast Asia. Climatology and interannual variability. Clim Res 71(3):263–280. https://doi.org/10.3354/cr01445

    Article  Google Scholar 

  • Ratnam JV, Giorgi F, Kaginalkar A, Cozzini S (2009) Simulation of the Indian monsoon using the RegCM3-ROMS regional coupled model. Clim Dyn 33:119–139

    Article  Google Scholar 

  • Ratnam JV, Behera SK, Annamalai H, Ratna SB, Rajeevan M, Yamagata T (2016) ENSO’s far reaching connection to Indian cold waves. Scientific Reports 6:37657. https://doi.org/10.1038/srep37657

  • Ratnam JV, Behera SK, Krishnan R, Doi T, Ratna SB (2017) Sensitivity of Indian summer monsoon simulation to physical parameterization schemes in the WRF model. Clim Res 74:43–66. https://doi.org/10.3354/cr01484

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker D, Duda MG, … Powers JG (2008) A Description of the Advanced Research WRF Version 3 (No.NCAR/TN-475+STR).University Corporation for Atmospheric Research. https://doi.org/10.5065/D68S4MVH

  • Srinivas CV, Hariprasad D, Bhaskar Rao DV, Anjaneyulu Y, Baskaran R, Venkatraman B (2013) Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int J Climatol 33(5):1195–1210. https://doi.org/10.1002/joc.3505

    Article  Google Scholar 

  • Srivastava AK, Rajeevan M, Kshirsagar SR (2009) Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmos Sci Lett 10:249–254. https://doi.org/10.1002/asl.232

    Article  Google Scholar 

  • Stan C, Xu L (2015) Climate simulations and projections with a super-parameterized climate model. Environ Model Softw 60:134–215. https://doi.org/10.1016/j.envsoft.2014.06.013

    Article  Google Scholar 

  • Subin ZM, Riley WJ, Jin J, Christianson DS, Torn MS, Kueppers LM (2011) Ecosystem Feedbacks to Climate Change in California. Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (WRF3–CLM3.5). Earth Interact. 15 (15), pp. 1–38. https://doi.org/10.1175/2010EI331.1

  • Sun J, Wang H, Tong W, Zhang Y, Lin C-Y, Xu D (2016) Comparison of the Impacts of Momentum Control Variables on High-Resolution Variational Data Assimilation and Precipitation Forecasting. Mon Wea Rev 144(1):149–169. https://doi.org/10.1175/MWR-D-14-00205.1

    Article  Google Scholar 

  • Tapiador FJ, Moreno R, Navarro A, Sánchez JL, García-Ortega E (2019) Climate classifications from regional and global climate models: Performances for present climate estimates and expected changes in the future at high spatial resolution. Atmos Res 228:107–121

    Article  Google Scholar 

  • Uppala SM, KÅllberg PW, Simmons AJ, Andrae U, Bechtold Da Costa V, Fiorino M et al (2005) The ERA-40 re-analysis. QJR Meteorol Soc 131(612):2961–3012. https://doi.org/10.1256/qj.04.176

    Article  Google Scholar 

  • Vishnu S, Francis PA, Shenoi SSC, Ramakrishna SSVS (2016) On the decreasing trend of the number of monsoon depressions in the Bay of Bengal. Environ Res Lett 11(1):14011. https://doi.org/10.1088/1748-9326/11/1/014011

    Article  Google Scholar 

  • Warscher M, Wagner S, Marke T, Laux P, Smiatek G, Strasser U, Kunstmann H (2019) A 5 km Resolution Regional Climate Simulation for Central Europe: Performance in High Mountain Areas and Seasonal. Regional and Elevation-Dependent Variations Atmosphere 10:682. https://doi.org/10.3390/atmos10110682

    Article  Google Scholar 

  • Xavier PK, Marzin C, Goswami BN (2007) An objective definition of the Indian summer monsoon season and a new perspective on the ENSO–monsoon relationship. QJR Meteorol Soc 133(624):749–764. https://doi.org/10.1002/qj.45

    Article  Google Scholar 

  • Xu Z, Zong-Liang Y (2012) An improved dynamical downscaling method with GCM bias corrections and its validation with 30 years of climate simulations. In J Climate 25(18):6271–6286. https://doi.org/10.1175/JCLI-D-12-00005.1

    Article  Google Scholar 

  • Yimin J, Vernekar AD (1997) Simulation of the Asian Summer Monsoons of 1987 and 1988 with a Regional Model Nested in a Global GCM. J Climate 10:1965–1979. https://doi.org/10.1175/1520-0442(1997)010%3c1965:SOTASM%3e2.0.CO;2

    Article  Google Scholar 

  • Yuan Q, Qi H, Zhang C (2017) WRF simulation and downscaling of local climate in Central Asia. J Climatol 37(Suppl. 1):513–528

    Google Scholar 

  • Yilling H, Peltier WR (2019) Dynamically Downscaled Climate Change Projections for the South Asian Monsoon: Mean and Extreme Precipitation Changes and Physics Parameterization Impacts. J Climate 33:2311–2331. https://doi.org/10.1175/JCLI-D-19-0268.1

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge free access of the following data: NCEP-RDA for providing CCSM4 data; ECMWF for providing ERA data and IMD for providing gridded rainfall. We acknowledge free access and user support from NCAR for the WRF model. Plots in this work are made using the GrADS software freely available online.

Funding

This work has been carried out with the support of grant from Department of Science and Technology (DST), New Delhi, Government of India, under Climate Change Programme (Ref. No. DST/CCP/MRDP-97/2017(G)).

Author information

Authors and Affiliations

Authors

Contributions

S.S.V.S. Ramakrishna performed WRF model, analysis and paper draft.

B. Ravi Srinivasa Rao contributed to WRF model design and adaptation, model experiments, visualization.

G. Ch. Satyanarayana done data analysis and visualization.

N. Nanaji Rao was involved in WRF model and experiments.

Roshmita Panda: Model experimentation, data analysis.

S. Madhu Sai and M. Sai Venkata Ramana done data analysis and visualization.

D. V. Bhaskar Rao performed conceptualization, model experiments and paper drafting.

Corresponding author

Correspondence to Dodla Venkata Bhaskar Rao.

Ethics declarations

Ethics approval

All the authors have read the manuscript and approved the manuscript.

Consent to participate

The authors have given their consent for submitting this paper to the Journal of Theoretical And Applied Climatology.

Consent for publication

The authors agree to give permission to the publisher to publish their work.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaramakrishna, S.S.V., Rao, B.R.S., Satyanarayana, G.C. et al. Simulation of Regional Climate over the Indian subcontinent through dynamical downscaling using WRF-ARW model. Theor Appl Climatol 148, 391–413 (2022). https://doi.org/10.1007/s00704-021-03905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-021-03905-5

Navigation