Skip to main content
Log in

Parameter estimation of copula functions using an optimization-based method

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

Application of the copulas can be useful for the accurate multivariate frequency analysis of hydrological phenomena. There are many copula functions and some methods were proposed for estimating the copula parameters. Since the copula functions are mathematically complicated, estimating of the copula parameter is an effortful work. In the present study, an optimization-based method (OBM) is proposed to obtain the parameters of copulas. The usefulness of the proposed method is illustrated on drought events. For this purpose, three commonly used copulas of Archimedean family, namely, Clayton, Frank, and Gumbel copulas are used to construct the joint probability distribution of drought characteristics of 60 gauging sites located in East-Azarbaijan province, Iran. The performance of OBM was compared with two conventional methods, namely, method of moments and inference function for margins. The results illustrate the supremacy of the OBM to estimate the copula parameters compared to the other considered methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Chen L, Singh VP, Guo S, Mishra AK, Guo J (2013a) Drought Analysis Using Copulas. J Hydrol Eng 18(7):797–808

    Article  Google Scholar 

  • Chen YD, Zhang Q, Xiao M, Singh VP (2013b) Evaluation of risk of hydrological droughts by the trivariate Plackett copula in the East River basin (China). Nat Hazards 68(2):529–547

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A Generalized Pareto intensity-duration mode of storm rainfall exploiting 2-Copulas. J Geophys Res 108(D2):4067

    Article  Google Scholar 

  • Fan YR, Huang WW, Huang GH, Huang K, Li YP, Kong XM (2015) Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges Reservoir area. China Theor Appl Climatol. doi:10.1007/s00704-015-1505-z

    Google Scholar 

  • Frahm G, Junker M, Schmidt R (2005) Estimating the tail-dependence coefficient: properties and pitfalls. Insur Math Econ 37(1):80–100

    Article  Google Scholar 

  • Fu G, Butler D (2014) Copula-based frequency analysis of overflow and flooding in urban drainage systems. J Hydrol 510:49–58

    Article  Google Scholar 

  • Ganguli P, Reddy MJ (2013) Probabilistic assessment of flood risks using trivariate copulas. Theor Appl Climatol 111(1–2):341–360

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Rémillard B (2004) Tests of independence based on the empirical copula process. TEST 13(2):335–369

    Article  Google Scholar 

  • Genest C, Rémillard B (2008) Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Ann Inst H Poincaré Probab Statist 44(6):1096–1127

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distribution. Biometrika 82(3):543–552

    Article  Google Scholar 

  • Genest C, Quessy JF, Rémillard B (2006) Local efficiency of a Cramér-von Mises test of independence. J Multivar Anal 97:274–294

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2009) Goodness-of-fit tests for copulas: A review and a power study. Insur Math Econ 44(2):199–213

    Article  Google Scholar 

  • Hassanzadeh Y, Abdi A, Talatahari S, Singh VP (2011) Meta-heuristic algorithms for hydrologic frequency analysis. Water Resour Manag 25(7):1855–1879

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and dependence concepts. Chapman and Hall, New York

    Book  Google Scholar 

  • Kaveh A, Behnam AF (2013) Charged system search algorithm for the optimum cost design of reinforced concrete cantilever retaini walls. Arab J Sci Eng 38:563–570

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010a) A novel heuristic optimization method: Charged system search. Acta Mech 213(3–4):267–289

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2010b) A charged system search with a fly to boundary method for discrete optimum design of truss structures. Asian J Civ Eng 11(3):277–293

    Google Scholar 

  • Kaveh A, Talatahari S (2011) Geometry and topology optimization of geodesic domes using charged system search. Struct Multidisc Optim 43:215–229

    Article  Google Scholar 

  • Kaveh A, Talatahari S (2012) Charged system search for optimal design of frame structures. Appl Soft Comput 12:382–393

    Article  Google Scholar 

  • Kaveh A, Talatahari S, Farahmand Azar B (2012) Optimum design of composite open channels using charged system search algorithm. IJST Trans Civ Eng 36(C1):67–77

    Google Scholar 

  • Lee T, Modarres R, Ouarda TBMJ (2013) Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol Process 27(10):1454–1463

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th Conference on Applied Climatology, 17–22 January, Anaheim, CA, pp, pp. 179–184

    Google Scholar 

  • Mirabbasi R, Anagnostou EN, Fakheri-Fard A, Dinpashoh Y, Eslamian S (2013) Analysis of meteorological drought in northwest Iran using the Joint Deficit Index. J Hydrol 492:35–48

    Article  Google Scholar 

  • Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108(1–2):191–206

    Article  Google Scholar 

  • Nazemi A, Elshorbagy A (2012) Application of copula modelling to the performance assessment or reconstructed watersheds. Stoch Environ Res Risk Assess 26(2):189–205

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • Özyön S, Temurtaş H, Durmuş B, Kuvat G (2012) Charged system search algorithm for emission constrained economic power dispatch problem. Energy 46:420–430

    Article  Google Scholar 

  • Poulin A, Huard D, Favre A, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Rauf UFA, Zeephongsekul P (2014) Copula based analysis of rainfall severity and duration: a case study. Theor Appl Climatol 115:153–166

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012a) Application of copulas for derivation of drought severity-duration-frequency curves. Hydrol Process 26(11):1672–1685

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012b) Bivariate flood frequency analysis of upper Godavari river flows using Archimedean copulas. Water Resour Manag 26(14):3995–4018

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2012c) Risk assessment of hydroclimatic variability on groundwater levels in the Manjara basin aquifer in India using Archimedean copulas. J Hydrol Eng 17(12):1345–1357

    Article  Google Scholar 

  • Reddy MJ, Ganguli P (2013) Spatio-temporal analysis and derivation of copula-base intensity-area-frequency curves for droughts in western Rajasthan (India). Stoch Environ Res Risk Assess 27(8):1975–1989

    Article  Google Scholar 

  • Reddy MJ, Singh VP (2014) Multivariate modeling of droughts using copulas and meta-heuristic method. Stoch Environ Res Risk Assess 28(3):475–489

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Water Science and Technology Library (Vol. 56). Springer, Dordrecht

    Google Scholar 

  • Santos JF, Portela MM, Pulido-Calvo I (2011) Regional frequency analysis of droughts in portugal. Water Resour Manag 25(14):3537–3558

    Article  Google Scholar 

  • Sheikholeslami R, Kaveh A, Tahershamsi A, Talatahari S (2014) Application of charged system search algorithm to water distribution networks optimization. Int J Optim Civ Eng 4(1):41–58

    Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815

    Article  Google Scholar 

  • Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489

    Article  Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plan Manage 127(1):30–40

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21:2157–2163

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231

    Google Scholar 

  • Song S, Singh VP (2010) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24(5):783–805

    Article  Google Scholar 

  • Sraj M, Bezak N, Brilly M (2015) Bivariate flood frequency analysis using the copula function: a case study of the Litija station on the Sava River. Hydrol Process 29(2):225–238

    Article  Google Scholar 

  • Talatahari S, Kaveh A, Sheikholeslami R (2012) Engineering design optimization using chaotic enhanced charged system search algorithms. Acta Mech 223:2269–2285

    Article  Google Scholar 

  • Talatahari S, Sheikholeslami R, Farahmand Azar B, Daneshpajouh H (2013) Optimal parameter estimation for muskingum model using a CSS-PSO method. Adv Mech Eng 5:480954

    Article  Google Scholar 

  • Xu K, Yang D, Xu X, Lei H (2015) Copula based drought frequency analysis considering the spatio-temporal variability in Southwest China. J Hydrol 527:630–640

    Article  Google Scholar 

  • Yu KX, Xiong L, Gottschalk L (2014) Derivation of low flow distribution functions using copulas. J Hydrol 508:273–288

    Article  Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332(1–2):93–109

    Article  Google Scholar 

  • Zhang Q, Li J, Singh VP (2012) Application of Archimedean copulas in the analysis of the precipitation extremes: effects of precipitation changes. Theor Appl Climatol 107:255–264

    Article  Google Scholar 

  • Zhang Q, Xiao M, Singh VP, Chen X (2013) Copula-based risk evaluation of droughts across the Pearl River basin, China. Theor Appl Climatol 111:119–131

    Article  Google Scholar 

  • Zin WZW, Jemain AA, Ibrahim K (2013) Analysis of drought condition and risk in Peninsular Malaysia using Standardised Precipitation Index. Theor Appl Climatol 111:559–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Abdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdi, A., Hassanzadeh, Y., Talatahari, S. et al. Parameter estimation of copula functions using an optimization-based method. Theor Appl Climatol 129, 21–32 (2017). https://doi.org/10.1007/s00704-016-1757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-016-1757-2

Keywords

Navigation