Skip to main content

Advertisement

Log in

Low-frequency climate variability of an aquaplanet

  • Original Paper
  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Abstract

The long-term variability of an aquaplanet climate is analyzed with a coupled atmosphere–ocean–sea ice general circulation model. The main result of the 20,000 years simulation is a very dominant low-frequency oscillation with a period of approximately 700 years. All compartments of the aquaplanet (atmosphere, ocean, and sea ice) are involved as the climate alternates between warmer and colder states. Comprehensive time series analyses, as well as a comparison between mean states of cold and warm phases, give a detailed picture of the life cycle of the low-frequency oscillation. The warm phases are characterized by ice-free polar waters and a weaker meridional overturning circulation. During cold phases, the poles are completely covered by sea ice (down to 65 N/S) and the overturning cells in the ocean are stronger. The climate state changes throughout atmosphere and ocean; however, surface areas in high latitudes are especially affected due to the changing sea ice cover. The meridional energy transport in atmosphere and ocean alternates with the climate regime, since the ocean is more efficient in transporting heat poleward when the poles are ice-free.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arakawa A, Lamb VR (1977) Computational design of the basic dynamical processes of the UCLA general circulation model. In: Chang J (ed) General circulation models of the atmosphere, methods in computational physics, vol 17, Academic Press, pp 173–265

  • Bitz CM, Holland MM, Hunke EC, Moritz RE (2005) Maintenance of the sea-ice edge. J Clim 18:2903–2921. doi:10.1175/JCLI3428.1

    Article  Google Scholar 

  • Bjerknes J (1964) Atlantic air-sea interactions. In: Landsberg H E, van Mieghem J (eds) Advances in geophysics, vol 10, Academic Press, pp 1–82

  • Broecker WS, Bond G, Klas M, Bonani G, Wolfli W (1990) A salt oscillator in the glacial atlantic? 1. the concept. Paleoceanography 5 (4):469–477

    Article  Google Scholar 

  • Chao WC, Chen B (2004) Single and double ITCZ in an aqua-planet model with constant sea surface temperature and solar angle. Clim Dyn 22 (4):447–459. doi:10.1007/s00382-003-0387-4

    Article  Google Scholar 

  • Claussen M, Mysak L, Weaver A, Crucifix M, Fichefet T, Loutre M F, Weber S, Alcamo J, Alexeev V, Berger A, Calov R, Ganopolski A, Goosse H, Lohmann G, Lunkeit F, Mokhov I, Petoukhov V, Stone P, Wang Z (2002) Earth system models of intermediate complexity: Closing the gap in the spectrum of climate system models. Clim Dyn 18 (7):579–586. doi:10.1007/s00382-001-0200-1

    Article  Google Scholar 

  • Clement A, Seager R (1999) Climate and the tropical ocean. J Clim 12 (12):3383–3401

    Article  Google Scholar 

  • Czaja A, Marshall J (2006) The partitioning of poleward heat transport between the atmosphere and ocean. J Atmos Sci 63 (5):1498–1511. doi:10.1175/JAS3695.1

    Article  Google Scholar 

  • Dahms E, Borth H, Lunkeit F, Fraedrich K (2011) ITCZ splitting and the influence of large-scale eddy fields on the tropical mean state. J Meteorol Soc Jpn 89 (5):399–411. doi:10.2151/jmsj.2011-501

    Article  Google Scholar 

  • Dansgaard W, Clausen HB, Gundestrup N, Hammer CU, Johnsen SF, Kristinsdottir PM, Reeh N (1982) A new Greenland deep ice core. Science 218 (4579):1273–1277. doi:10.1126/science.218.4579.1273

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, Bond G (1993) Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364 (6434):218–220

    Article  Google Scholar 

  • Eliasen E, Machenhauer B, Rasmussen E (1970) On a numerical method for integration of the hydrodynamical equations with a spectral representation of the horizontal fields. Report No 2, Institute for Theoretical Meteorology. Copenhagen University, Denmark

    Google Scholar 

  • Enderton D, Marshall J (2009) Explorations of atmosphere-ocean-ice climates on an aquaplanet and their meridional energy transports. J Atmos Sci 66 (6):1593–1611. doi:10.1175/2008JAS2680.1

    Article  Google Scholar 

  • Farrow DE, Stevens DP (1995) A new tracer advection scheme for Bryan and Cox type ocean general circulation models. J Phys Oceanogr 25 (7):1731–1741

    Article  Google Scholar 

  • Ferreira D, Marshall J, Campin JM (2010) Localization of deep water formation: Role of atmospheric moisture transport and geometrical constraints on ocean circulation. J Clim 23 (6):1456–1476. doi:10.1175/2009JCLI3197.1

    Article  Google Scholar 

  • Ferreira D, Marshall J, Rose B (2011) Climate determinism revisited: Multiple equilibria in a complex climate model. J Clim 24 (4):992–1012. doi:10.1175/2010JCLI3580.1

    Article  Google Scholar 

  • Fraedrich K (2012) A suite of user-friendly global climate models: Hysteresis experiments. Eur Phys J Plus 127 (53):1–9. doi:10.1140/epjp/i2012-12053-7

    Google Scholar 

  • Fraedrich K, Kirk E, Lunkeit F (1998) PUMA: Portable University Model of the Atmosphere. Tech. Rep. 16, Deutsches Klimarechenzentrum

  • Fraedrich K, Jansen H, Kirk E, Luksch U, Lunkeit F (2005) The planet simulator: Towards a user friendly model. Meteorol Z 14 (3):299–304. doi:10.1127/0941-2948/2005/0043

    Article  Google Scholar 

  • Ganopolski A, Rahmstorf S (2001) Rapid changes of glacial climate simulated in a coupled climate model. Nature 409 (6817):153–158

    Article  Google Scholar 

  • Gent PR, McWilliams JC (1990) Isopycnal mixing in ocean circulation models. J Phys Oceanogr 20:150–160. doi:10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2

    Article  Google Scholar 

  • Gent PR, Willebrand J, McDougall TJ, McWilliams JC (1995) Parameterizing eddy-induced tracer transports in ocean circulation models. J Phys Oceanogr 25:463–474. doi:10.1175/1520-0485(1995)025<0463:PEITTI>2.0.CO;2

    Article  Google Scholar 

  • Haarsma RJ, Opsteegh JD, Selten FM, Wang X (2001) Rapid transitions and ultra-low frequency behaviour in a 40 kyr integration with a coupled climate model of intermediate complexity. Clim Dyn 17 (7):559–570

    Article  Google Scholar 

  • Hasselmann K (1982) An ocean model for climate variability studies. Prog Oceanogr 11 (2):69–92. doi:10.1016/0079-6611(82)90004-0. http://www.sciencedirect.com/science/article/B6V7B-48BC8RX-2/2/056c074ddacec8bccb2e7144fe5fc663 http://www.sciencedirect.com/science/article/B6V7B-48BC8RX-2/2/056c074ddacec8bccb2e7144fe5fc663

    Article  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast atlantic ocean during the past 130,000 years. Quat Res 29 (2):142–152. doi:10.1016/0033-5894(88)90057-9. http://www.sciencedirect.com/science/article/pii/0033589488900579

    Article  Google Scholar 

  • Held IM (2001) The partitioning of the poleward energy transport between the tropical ocean and atmosphere. J Atmos Sci 58 (8):943–948

    Article  Google Scholar 

  • Held IM, Hou AY (1980) Nonlinear axially symmetric circulations in a nearly inviscid atmosphere. J Atmos Sci 37 (3):515–533

    Article  Google Scholar 

  • Hess PG, Battisti DS, Rasch PJ (1993) Maintenance of the intertropical convergence zones and the large-scale tropical circulation on a water-covered earth. J Atmos Sci 50 (5):691–713

    Article  Google Scholar 

  • Knorr G, Lohmann G (2007) Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem Geop Geosyst 8 (12):Q12006. doi:10.1029/2007GC001604

    Google Scholar 

  • Kuo HL (1965) On formation and intensification of tropical cyclones through latent heat release by cumulus convection. J Atmos Sci 22 (1):40–63

    Article  Google Scholar 

  • Kuo HL (1974) Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci 31 (5):1232–1240

    Article  Google Scholar 

  • Lacis AA, Hansen JE (1974) A parameterization for the absorption of solar radiation in the earth’s atmosphere. J Atmos Sci 31 (1):118–133

    Article  Google Scholar 

  • Laursen L, Eliasen E (1989) On the effects of the damping mechanisms in an atmospheric general circulation model. Tellus A 41 (5):385–400

    Article  Google Scholar 

  • Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19 (1):59–98. doi:10.1016/0045-7825(79)90034-3

    Article  Google Scholar 

  • Louis JF (1979) A parametric model of vertical eddy fluxes in the atmosphere. Bound -Layer Meteorol 17 (2):187–202

    Article  Google Scholar 

  • Louis JF, Tiedtke M, Geleyn JF (1982) A short history of the operational PBL - parameterization at ECMWF. In: Proceedings, ECMWF workshop on planetary boundary layer parameterization, Reading, 25.-27. November 1981

  • Loving JL, Vallis GK (2005) Mechanisms for climate variability during glacial and interglacial periods. Paleoceanography 20 (4):PA4024 1–19. doi:10.1029/2004PA001113

    Article  Google Scholar 

  • Maier-Reimer E, Mikolejewicz U, Hasselmann K (1993) Mean circulation of the Hamburg LSG OGCM and its sensitivity to the thermohaline surface forcing. J Phys Oceanogr 23 (4):731–757

    Article  Google Scholar 

  • Manabe S, Bryan K, Spelman MJ (1975) A global ocean-atmosphere climate model. part I: The atmospheric circulation. J Phys Oceanogr 5 (1):3–29

    Article  Google Scholar 

  • Marotzke J, Willebrand J (1991) Multiple equilibria of the global thermohaline circulation. J Phys Oceanogr 21 (9):1372–1385

    Article  Google Scholar 

  • Marshall J, Ferreira D, Campin JM, Enderton D (2007) Mean climate and variability of the atmosphere and ocean on an aquaplanet. J Atmos Sci 64 (12):4270–4286. doi:10.1175/2007JAS2226.1

    Article  Google Scholar 

  • Mikolajewicz U, Maier-Reimer E (1990) Internal secular variability in an ocean general circulation model. Clim Dyn 4 (3):145– 156

    Article  Google Scholar 

  • Neale RB, Hoskins B (2001a) A standard test for AGCMs including their physical parametrizations. II: Results for the Met Office Model. Atmos Sci Lett 1 (2):108–114. doi:10.1006/asle.2000.0020

    Article  Google Scholar 

  • Neale RB, Hoskins BJ (2001b) A standard test for AGCMs including their physical parametrizations. I: The proposal. Atmos Sci Lett 1 (2):101–107. doi:10.1006/asle.2000.0019

    Article  Google Scholar 

  • Orszag SA (1970) Transform method for the calculation of vector-coupled sums: Application to the spectral form of the vorticity equation. J Atmos Sci 27 (6):890–895

    Article  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of Climate. American Institute of Physics

  • Pierce DW, Barnett TP, Mikolajewicz U (1995) Competing roles of heat and freshwater flux in forcing thermohaline oscillations. J Phys Oceanogr 25 (9):2046–2064

    Article  Google Scholar 

  • Pike AC (1971) Intertropical convergence zone studied with an interacting atmosphere and ocean model. Mon Weather Rev 99 (6):469–477

    Article  Google Scholar 

  • Prange M, Lohmann G, Paul A (2003) Influence of vertical mixing on the thermohaline hysteresis: Analyses of an OGCM. J Phys Oceanogr 33 (8):1707–1721. doi:10.1175/2389.1

    Article  Google Scholar 

  • Rahmstorf S, Crucifix M, Ganopolski A, Goosse H, Kamenkovich I, Knutti R, Lohmann G, Marsh R, Mysak LA, Wang Z, Weaver AJ (2005) Thermohaline circulation hysteresis: a model intercomparison. Geophys Res Lett 32 (23):L23,605. doi:10.1029/2005GL023655

    Article  Google Scholar 

  • Roeckner E, Arpe K, Bengtsson L, Brinkop S, Dümenil L, Esch M, Kirk E, Lunkeit F, Ponater M, Rockel B, Sausen R, Schlese U, Schubert S, Windelband M (1992) Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Report 93, Max-Planck-Institut für Meteorologie

  • Rose BEJ, Ferreira D, Marshall J (2013) The Role of Oceans and Sea Ice in Abrupt Transitions between Multiple Climate States. J Clim 26:2862–2879. doi:10.1175/JCLI-D-12-00175.1

    Article  Google Scholar 

  • Saltzman B (2002) Dynamical Paleoclimatology. Generalized Theory of Global Climate Change. Academic Press

  • Sasamori T (1968) The radiative cooling calculation for application to general circulation experiments. J Appl Meteorol 7 (5):721–729

    Article  Google Scholar 

  • Schmittner A, Silva TAM, Fraedrich K, Kirk E, Lunkeit F (2011) Effects of mountains and ice sheets on global ocean circulation. J Clim 24:2814–2829. doi:10.1175/2010JCLI3982.1

    Article  Google Scholar 

  • Semtner AJJ (1976) A model for the thermodynamic growth of sea ice in numerical investigations of climate. J Phys Oceanogr 3 (3):379–389

    Article  Google Scholar 

  • Slingo A, Slingo JM (1991) Response of the national center for atmospheric research community climate model to improvements in the representation of clouds. J Geophys Res 96 (D8):341–357

    Google Scholar 

  • Smith RS, Dubois C, Marotzke J (2006) Global climate and ocean circulation on an aquaplanet ocean-atmosphere general circulation model. J Clim 19 (18):4719–4737

    Article  Google Scholar 

  • Stephens GL (1978) Radiation profiles in extended water clouds. II: Parameterization schemes. J Atmos Sci 35 (11):2123–2132

    Article  Google Scholar 

  • Stephens GL, Ackerman S, Smith EA (1984) A shortwave parameterization revised to improve cloud absorption. J Atmos Sci 41 (4):687–690

    Article  Google Scholar 

  • Stone PH (1978) Constraints on dynamical transports of energy on a spherical planet. Dyn Atmos Oceans 2 (2):123–139. doi: doi:10.1016/0377-0265(78)90006-4. http://www.sciencedirect.com/science/article/B6VCR-48BD3J0-29/2/e9d40d708a8869219c1959f5cda6b4bd http://www.sciencedirect.com/science/article/B6VCR-48BD3J0-29/2/e9d40d708a8869219c1959f5cda6b4bd http://www.sciencedirect.com/science/article/B6VCR-48BD3J0-29/2/e9d40d708a8869219c1959f5cda6b4bd

    Article  Google Scholar 

  • UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. Technical papers in marine sciences 36, UNESCO

  • Weaver AJ, Sarachik ES, Marotze J (1991) Freshwater flux forcing of decadal and interdecadal oceanic variability. Nature 353:836–838. doi:10.1038/353836a0

    Article  Google Scholar 

  • Weber SL (2010) The utility of earth system models of intermediate complexity (emics). Wiley Interdiscip Rev Clim Chang 1 (2):243–252. doi:10.1002/wcc.24

    Google Scholar 

  • Wenzel M, Schröter J (2007) The global ocean mass budget in 1993–2003 estimated from sea level change. J Phys Oceanogr 37 (2):203–213. doi:10.1175/JPO3007.1

    Article  Google Scholar 

  • Winton M (1993) Deep decoupling oscillations of the oceanic thermohaline circulation. In: Peltier WR (ed) Ice in the climate system. Springer-Verlag, NATO ASI Series, pp 417–432

    Chapter  Google Scholar 

  • Winton M (2003) On the climatic impact of ocean circulation. J Clim 16 (17):2875–2889

    Article  Google Scholar 

  • Winton M, Sarachik ES (1993) Thermohaline oscillations induced by strong steady salinity forcing of ocean general circulation models. J Phys Oceanogr 23 (7):1389–1410

    Article  Google Scholar 

  • Wunsch C (2004) Quantitative estimate of the milankovitch-forced contribution to observed quaternary climate change. Quat Sci Rev 23 (9-10):1001–1012. doi:10.1016/j.quascirev.2004.02.014. http://www.sciencedirect.com/science/article/pii/S0277379104000575

  • Wunsch C (2010) Towards understanding the paleocean. Quat Sci Rev 29 (17-18):1960–1967. doi:10.1016/j.quascirev.2010.05.020. http://www.sciencedirect.com/science/article/pii/S0277379110001563

  • Yang J, Neelin JD (1993) Sea-ice interaction with the thermohaline circulation. Geophys Res Lett 20 (2):217–220

    Article  Google Scholar 

  • Yang J, Neelin JD (1997) Decadal variability in coupled sea-ice-thermohaline circulation systems. J Clim 10 (12):3059–3076

    Article  Google Scholar 

  • Zhu X, Fraedrich K, Blender R (2006) Variability regimes of simulated atlantic moc. Geophys. Res. Lett 33 (L21,603):1–4. doi:10.1029/2006GL027291

    Google Scholar 

Download references

Acknowledgements

EH and KF acknowledge and are grateful for the support by a Max Planck Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eileen Hertwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertwig, E., Lunkeit, F. & Fraedrich, K. Low-frequency climate variability of an aquaplanet. Theor Appl Climatol 121, 459–478 (2015). https://doi.org/10.1007/s00704-014-1226-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00704-014-1226-8

Keywords

Navigation