Skip to main content
Log in

The role of bone mineral density in adult spinal deformity patients undergoing corrective surgery: a matched analysis

  • Original Article - Spine degenerative
  • Published:
Acta Neurochirurgica Aims and scope Submit manuscript

Abstract

Study design

Retrospective cohort.

Background

Over 44 million adults are estimated to have either osteoporosis or osteopenia. Adult spinal deformity (ASD) is estimated to affect between 32 and 68% of the elderly population.

Objective

Retrospective investigation comparing rates of postoperative complications following thoracolumbar scoliosis surgery in patients with normal bone mineral density (BMD) to those with osteopenia or osteoporosis in addition to analyzing the effects of pretreatment with anti-osteoporotic medications in patients with low BMD.

Methods

Using administrative database of Humana beneficiaries, ICD-9 and ICD-10 diagnosis codes were used to identify ASD patients undergoing multilevel thoracolumbar fusions between 2007 and 2017.

Results

The propensity matched population analyzed in this study contained 1044 patients equally represented by those with a history of osteopenia, osteoporosis, or normal BMD. Osteopenia and osteoporosis were associated with increased odds of revision surgery (OR 2.01 95% CI 1.36–2.96 and OR 1.57, 95% CI 1.05–2.35), respectively. Similarly, there was an almost twofold increased odds of proximal and distal junctional kyphosis in patients with osteopenia and osteoporosis (OR 1.95, 95% CI 1.40–2.74 and OR 1.88, 95% CI 1.34–2.64), respectively. A total of 258 (37.1%) patients with osteoporosis were pretreated with anti-osteoporotic medications and there was no statistically significant decrease in odds of proximal or distal junctional kyphosis or revision surgery in these patients.

Conclusion

Patients with ASD undergoing multilevel thoracolumbar fusion surgery have significantly higher rates of postoperative pseudarthrosis, proximal and distal junctional kyphosis, and revision surgery rates compared to patients with normal BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Amin RM, Raad M, Jain A et al (2019) Risk factors for nonroutine discharge in adult spinal deformity surgery. Spine J Off J North Am Spine Soc 19(2):357–363. https://doi.org/10.1016/j.spinee.2018.06.366

    Article  Google Scholar 

  2. Barber JW, Boden SD, Ganey T, Hutton WC (1998) Biomechanical study of lumbar pedicle screws: does convergence affect axial pullout strength? J Spinal Disord 11(3):215–220

    Article  CAS  Google Scholar 

  3. Buerba RA, Sharma A, Ziino C, Arzeno A, Ajiboye RM (2018) Bisphosphonate and teriparatide use in thoracolumbar spinal fusion: a systematic review and meta-analysis of comparative studies. Spine 43(17):E1014–E1023. https://doi.org/10.1097/BRS.0000000000002608

    Article  PubMed  Google Scholar 

  4. Carmouche JJ, Molinari RW, Gerlinger T, Devine J, Patience T (2005) Effects of pilot hole preparation technique on pedicle screw fixation in different regions of the osteoporotic thoracic and lumbar spine. J Neurosurg Spine 3(5):364–370. https://doi.org/10.3171/spi.2005.3.5.0364

    Article  PubMed  Google Scholar 

  5. Chen F, Dai Z, Kang Y, Lv G, Keller ET, Jiang Y (2016) Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 27(4):1469–1476. https://doi.org/10.1007/s00198-015-3398-1

    Article  CAS  Google Scholar 

  6. Deyo RA, Gray DT, Kreuter W, Mirza S, Martin BI (2005) United States trends in lumbar fusion surgery for degenerative conditions. Spine. 30(12):1441–1445. https://doi.org/10.1097/01.brs.0000166503.37969.8a

    Article  PubMed  Google Scholar 

  7. Díaz-Romero Paz R, Sosa Henríquez M, ArmasMelián K, Coloma VG (2019) Trends and attitudes of spine surgeons regarding osteoporosis. Neurocir Astur Spain 30(6):268–277. https://doi.org/10.1016/j.neucir.2019.04.004

    Article  Google Scholar 

  8. Diebo BG, Shah NV, Boachie-Adjei O et al (2019) Adult spinal deformity. Lancet Lond Engl 394(10193):160–172. https://doi.org/10.1016/S0140-6736(19)31125-0

    Article  Google Scholar 

  9. Dipaola CP, Bible JE, Biswas D, Dipaola M, Grauer JN, Rechtine GR (2009) Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J Off J North Am Spine Soc 9(7):537–544. https://doi.org/10.1016/j.spinee.2009.02.005

    Article  Google Scholar 

  10. Fehlings MG, Tetreault L, Nater A et al (2015) The aging of the global population: the changing epidemiology of disease and spinal disorders. Neurosurgery 77(Suppl 4):S1-5. https://doi.org/10.1227/NEU.0000000000000953

    Article  PubMed  Google Scholar 

  11. Gupta A, Upadhyaya S, Patel A et al (2020) DEXA sensitivity analysis in patients with adult spinal deformity. Spine J Off J North Am Spine Soc 20(2):174–180. https://doi.org/10.1016/j.spinee.2019.08.011

    Article  Google Scholar 

  12. Hackenberg L, Link T, Liljenqvist U (2002) Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine 27(9):937–942. https://doi.org/10.1097/00007632-200205010-00010

    Article  PubMed  Google Scholar 

  13. Hadjipavlou AG, Nicodemus CL, al-Hamdan FA, Simmons JW, Pope MH. (1997) Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct. J Spinal Disord. 10(1):12–19

    Article  CAS  Google Scholar 

  14. Halvorson TL, Kelley LA, Thomas KA, Whitecloud TS, Cook SD (1994) Effects of bone mineral density on pedicle screw fixation. Spine 19(21):2415–2420. https://doi.org/10.1097/00007632-199411000-00008

    Article  CAS  PubMed  Google Scholar 

  15. Huang RC, Khan SN, Sandhu HS et al (2005) Alendronate inhibits spine fusion in a rat model. Spine 30(22):2516–2522. https://doi.org/10.1097/01.brs.0000186470.28070.7b

    Article  PubMed  Google Scholar 

  16. Jung A, Bisaz S, Fleisch H (1973) The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 11(4):269–280. https://doi.org/10.1007/BF02547227

    Article  CAS  PubMed  Google Scholar 

  17. Khosla S, Melton LJ (2007) Clinical practice. Osteopenia N Engl J Med 356(22):2293–2300. https://doi.org/10.1056/NEJMcp070341

    Article  CAS  PubMed  Google Scholar 

  18. Kim HJ, Iyer S (2016) Proximal junctional kyphosis. J Am Acad Orthop Surg 24(5):318–326. https://doi.org/10.5435/JAAOS-D-14-00393

    Article  PubMed  Google Scholar 

  19. Kim HJ, Yagi M, Nyugen J, Cunningham ME, Boachie-Adjei O (2012) Combined anterior-posterior surgery is the most important risk factor for developing proximal junctional kyphosis in idiopathic scoliosis. Clin Orthop 470(6):1633–1639. https://doi.org/10.1007/s11999-011-2179-1

    Article  PubMed  Google Scholar 

  20. Kim JS, Phan K, Cheung ZB et al (2019) Surgical, radiographic, and patient-related risk factors for proximal junctional kyphosis: a meta-analysis. Glob Spine J 9(1):32–40. https://doi.org/10.1177/2192568218761362

    Article  CAS  Google Scholar 

  21. Kumano K, Hirabayashi S, Ogawa Y, Aota Y (1994) Pedicle screws and bone mineral density. Spine 19(10):1157–1161. https://doi.org/10.1097/00007632-199405001-00012

    Article  CAS  PubMed  Google Scholar 

  22. Lehman RA, Kuklo TR, Freedman BA, Cowart JR, Mense MG, Riew KD (2004) The effect of alendronate sodium on spinal fusion: a rabbit model. Spine J Off J North Am Spine Soc 4(1):36–43. https://doi.org/10.1016/s1529-9430(03)00427-3

    Article  Google Scholar 

  23. Margulies JY, Payzer A, Nyska M, Neuwirth MG, Floman Y, Robin GC (1996) The relationship between degenerative changes and osteoporosis in the lumbar spine. Clin Orthop 324:145–152. https://doi.org/10.1097/00003086-199603000-00017

    Article  Google Scholar 

  24. McDonald MM, Dulai S, Godfrey C, Amanat N, Sztynda T, Little DG (2008) Bolus or weekly zoledronic acid administration does not delay endochondral fracture repair but weekly dosing enhances delays in hard callus remodeling. Bone 43(4):653–662. https://doi.org/10.1016/j.bone.2008.05.019

    Article  CAS  PubMed  Google Scholar 

  25. Miller PD (2008) Anti-resorptives in the management of osteoporosis. Best Pract Res Clin Endocrinol Metab 22(5):849–868. https://doi.org/10.1016/j.beem.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  26. Miller PD, Watts NB, Licata AA et al (1997) Cyclical etidronate in the treatment of postmenopausal osteoporosis: efficacy and safety after seven years of treatment. Am J Med 103(6):468–476. https://doi.org/10.1016/s0002-9343(97)00278-7

    Article  CAS  PubMed  Google Scholar 

  27. Morris CD, Einhorn TA (2005) Bisphosphonates in orthopaedic surgery. J Bone Joint Surg Am 87(7):1609–1618. https://doi.org/10.2106/JBJS.D.03032

    Article  PubMed  Google Scholar 

  28. Nagahama K, Kanayama M, Togawa D, Hashimoto T, Minami A (2011) Does alendronate disturb the healing process of posterior lumbar interbody fusion? A prospective randomized trial. J Neurosurg Spine 14(4):500–507. https://doi.org/10.3171/2010.11.SPINE10245

    Article  PubMed  Google Scholar 

  29. Nakao S, Minamide A, Kawakami M, Boden SD, Yoshida M (2011) The influence of alendronate on spine fusion in an osteoporotic animal model. Spine 36(18):1446–1452. https://doi.org/10.1097/BRS.0b013e3181f49c47

    Article  PubMed  Google Scholar 

  30. Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K (2001) Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J Off J North Am Spine Soc 1(6):402–407. https://doi.org/10.1016/s1529-9430(01)00078-x

    Article  CAS  Google Scholar 

  31. Rajaee SS, Bae HW, Kanim LEA, Delamarter RB (2012) Spinal fusion in the United States: analysis of trends from 1998 to 2008. Spine 37(1):67–76. https://doi.org/10.1097/BRS.0b013e31820cccfb

    Article  PubMed  Google Scholar 

  32. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97(12):2692–2696. https://doi.org/10.1172/JCI118722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schimmer RC, Bauss F (2003) Effect of daily and intermittent use of ibandronate on bone mass and bone turnover in postmenopausal osteoporosis: a review of three phase II studies. Clin Ther 25(1):19–34. https://doi.org/10.1016/s0149-2918(03)90005-1

    Article  CAS  PubMed  Google Scholar 

  34. Schreiber JJ, Hughes AP, Taher F, Girardi FP (2014) An association can be found between Hounsfield units and success of lumbar spine fusion. HSS J 10(1):25–29. https://doi.org/10.1007/s11420-013-9367-3

    Article  PubMed  Google Scholar 

  35. Seki S, Hirano N, Kawaguchi Y et al (2017) Teriparatide versus low-dose bisphosphonates before and after surgery for adult spinal deformity in female Japanese patients with osteoporosis. Eur Spine J 26(8):2121–2127. https://doi.org/10.1007/s00586-017-4959-0

    Article  PubMed  Google Scholar 

  36. Sheu H, Liao J-C, Lin Y-C (2019) The fate of thoracolumbar surgeries in patients with Parkinson’s disease, and analysis of risk factors for revision surgeries. BMC Musculoskelet Disord 20(1):106. https://doi.org/10.1186/s12891-019-2481-8

    Article  PubMed  PubMed Central  Google Scholar 

  37. Soshi S, Shiba R, Kondo H, Murota K (1991) An experimental study on transpedicular screw fixation in relation to osteoporosis of the lumbar spine. Spine 16(11):1335–1341. https://doi.org/10.1097/00007632-199111000-00015

    Article  CAS  PubMed  Google Scholar 

  38. Tonino RP, Meunier PJ, Emkey R et al (2000) Skeletal benefits of alendronate: 7-year treatment of postmenopausal osteoporotic women Phase III Osteoporosis Treatment Study Group. J Clin Endocrinol Metab. 85(9):3109–3115. https://doi.org/10.1210/jcem.85.9.6777

    Article  CAS  PubMed  Google Scholar 

  39. Tu C-W, Huang K-F, Hsu H-T, Li H-Y, Yang SS-D, Chen Y-C (2014) Zoledronic acid infusion for lumbar interbody fusion in osteoporosis. J Surg Res. 192(1):112–116. https://doi.org/10.1016/j.jss.2014.05.034

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe K, Lenke LG, Bridwell KH, Kim YJ, Koester L, Hensley M (2010) Proximal junctional vertebral fracture in adults after spinal deformity surgery using pedicle screw constructs. Spine 35(2):138–145. https://doi.org/10.1097/BRS.0b013e3181c8f35d

    Article  PubMed  Google Scholar 

  41. Wright NC, Looker AC, Saag KG et al (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res Off J Am Soc Bone Miner Res 29(11):2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  Google Scholar 

  42. Zou D, Li W, Deng C, Du G, Xu N (2019) The use of CT Hounsfield unit values to identify the undiagnosed spinal osteoporosis in patients with lumbar degenerative diseases. Eur Spine J Off Publ Eur Spine Soc Eur Spinal Deform Soc Eur Sect Cerv Spine Res Soc 28(8):1758–1766. https://doi.org/10.1007/s00586-018-5776-9

    Article  Google Scholar 

  43. Zhao J, Chen K, Zhai X, Chen K, Li M, Lu Y. Incidence and risk factors of proximal junctional kyphosis after internal fixation for adult spinal deformity: a systematic evaluation and meta-analysis. Neurosurg Rev. Published online May 19, 2020. doi:https://doi.org/10.1007/s10143-020-01309-z

  44. DeWald CJ, Stanley T (2006) Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Vol 31. doi:https://doi.org/10.1097/01.brs.0000236893.65878.39

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed I. Khalid.

Ethics declarations

Ethics approval

The present study was evaluated by our institution’s IRB and was deemed to be except from IRB approval.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Spine degenerative

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, S.I., Nunna, R.S., Smith, J.S. et al. The role of bone mineral density in adult spinal deformity patients undergoing corrective surgery: a matched analysis. Acta Neurochir 164, 2327–2335 (2022). https://doi.org/10.1007/s00701-022-05317-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00701-022-05317-4

Keywords

Navigation