Skip to main content
Log in

Phylogenetic relationships among species of Setaria (Paniceae; Panicoideae; Poaceae) in Korea: insights from nuclear (ITS and kn1) and chloroplast DNA sequence data

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

The genus Setaria (tribe Paniceae, subfamily Panicoideae, family Poaceae) comprises approximately 125 species, including agriculturally important food crop (Setaria italica) and globally distributed weed species (S. viridis, S. faberi, S. verticillata, and S. pumila). As an ongoing attempt to determine phylogenetic relationships among species of Setaria in East Asia, we generated phylogeny of Setaria based on a total of 44 accessions representing all the species in Korea. We sequenced two nuclear loci (nrDNA ITS and kn1) and three chloroplast DNA non-coding regions (trnL-trnF, psbJ-petA, and trnQ-rps16) and conducted maximum parsimony, maximum likelihood and Bayesian Inference analyses. The results identified two groups of Setaria in Korea, i.e., S. glauca (=S. pumila) group and S. viridisS. faberi complex (S. viridis, S. italica, S. faberi, and S. × pycnocoma) group. Only one representative perennial species (i.e., S. chondrachne) in Korea is sister to the S. viridisS. faberi clade. A minimum of two independent origins of S. faberi, a putative allotetraploid, is suggested in this study, but the contribution from B genome (i.e., S. adhaerens) was not supported. The origin of tetraploid, perennial species of Setaria in Korea, S. chondrachne, is uncertain, but this study suggests possible autotetraploidy and close relationship of S. chondrachne with A genome type species in S. viridisS. faberi clade. We also documented possible ancient gene flow between D genome (i.e., S. glauca var. dura) and A genome (e.g., S. viridis) in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Benabdelmouna A, Shi Y, Abirached-Darmency M, Darmency H (2001) Genomic in situ hybridization (GISH) discriminates between the A and the B genomes in diploid and tetraploid Setaria species. Genome 44:685–690

    Article  CAS  PubMed  Google Scholar 

  • Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu X-G, Kellogg E, Van Eck J (2010) Setaria viridis: a model for C4 photosynthesis. Plant Cell 22:2537–2544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen S, Phillips SM (2006) Setaria. In: Wu ZY, Raven PH, Hong DY (eds) Flora of Chine, vol 22, Poaceae. Science Press/Missouri Botanical Garden Press, Beijing/St. Louis, pp 531–537

  • Chung IC (1965) Korean grasses. Chicago, p 186

  • Clayton WD, Renvoize SA (1986) Genera Graminum. Grasses of the World. Kew Bull Addit Ser 13, Her Majesty’s Stationery Office, London. pp 389

  • Clements DR, DiTommaso A (2011) Climate change and weed adaptation: can evolution of invasive plants lead to greater range expansion than forecasted? Weed Res 51:227–240

    Article  Google Scholar 

  • Darmency H (2005) Incestuous relations of foxtail millet (Setaria italica) with its parents and cousins. In: Gressel J (ed) Crop ferality and volunteerism. CRC Press, Boca-Raton, pp 81–96

    Chapter  Google Scholar 

  • Darmency H, Pernès J (1985) Use of wild Setaria viridis (L.) Beauv. to improve triazine resistance in cultivated S. italica by hybridization. Weed Res 25:175–179

    Article  CAS  Google Scholar 

  • Darmency H, Zangré GR, Pernès J (1987) The wild weed crop complex in Setaria italica: a hybridization study. Genetica 75:103–107

    Article  Google Scholar 

  • De Wet JMJ, Oestry-Sidd LL, Cubero JL (1979) Origins and evolution of foxtail millets (Setaria italica). J Agric Trad Bot Appl 26:53–64

    Google Scholar 

  • Doust AN, Penly AM, Jacobs SWL, Kellogg EA (2007) Congruence, conflict, and polyploidization shown by nuclear and chloroplast markers in the monophyletic “bristle clade” (Paniceae, Panicoideae, Poaceae). Syst Bot 32:531–544

    Article  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fitch WM (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416

    Article  Google Scholar 

  • Fogg WH (1983) Swidden cultivation of foxtail millet by Taiwan Aborigines: a cultural analogue of the domestication of Setaria italics in China. In: Keightley DN (ed) The origins of Chinese civilization. UC Press, California, pp 95–115

    Google Scholar 

  • Fukunaga K, Ichitani K, Kawase M (2006) Phylogenetic analysis of the rDNA intergenic spacer subrepeats and its implication for the domestication history of foxtail millet, Setaria italica. Theor Appl Genet 113:261–269

    Article  CAS  PubMed  Google Scholar 

  • Goldman N (1993) Statistical tests of models of DNA substitution. J Mol Evol 36:182–198

    Article  CAS  PubMed  Google Scholar 

  • Hirano R, Naito K, Fukunaga K, Watanabe KN, Ohsawa R, Kawase M (2011) Genetic structure of landraces in foxtail millet (Setaria italica (L.) P. Beauv.) revealed with transposon display and interpretation to crop evolution of foxtail millet. Genome 54:498–506

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Jia G, Shi S, Wang C, Niu Z, Chai Y, Zhi H, Diao X (2013) Molecular diversity and population structure of Chinese green foxtail [Setaria viridis (L.) Beauv.] revealed by microsatellite analysis. J Exp Bot 64:3645–3655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kellogg EA, Aliscioni SS, Morrone O, Pensiero J, Zuloaga F (2009) A phylogeny of Setaria (Poaceae, Panicoideae, Paniceae) and related genera based on the chloroplast gene ndhF. Int J Plant Sci 170:117–131

    Article  CAS  Google Scholar 

  • Kim C-S, Yong IK, Chung Y-J, Oh S-M (2002) A taxonomic re-examination of the foxtails (genus Setaria; Poaceae) in Korea. Korean J Breed Sci 22:21–25 (in Korean)

    Google Scholar 

  • Kim EJ, Sa KJ, Yu CY, Lee JK (2010) Morphological variation of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm collected in Korea, China, and Pakistan. Korean J Breed Sci 42:181–187 (in Korean)

    Google Scholar 

  • Kim EJ, Sa KJ, Lee JK (2011) Genetic variation of foxtail millet [Setaria italica (L.) P. Beauv.] among accessions collected from Korea revealed by AFLP markers. Korean J Crop Sci 56:322–328 (in Korean)

    Article  Google Scholar 

  • Kim EJ, Sa KJ, Park K-C, Lee JK (2012) Study of genetic diversity and relationships among accessions of foxtail millet [Setaria italica (L.) P. Beauv.] in Korea, China, and Pakistan using SSR markers. Genes Genom 34:529–538

    Article  CAS  Google Scholar 

  • Layton DJ, Kellogg EA (2014) Morphological, phylogenetic, and ecological diversity of the new model species Setaria viridis (Poaceae: Paniceae) and its close relatives. Am J Bot 101:539–557

    Article  PubMed  Google Scholar 

  • Le Thierry d’Ennequin M, Panaud O, Toupance B, Sarr A (2000) Assessment of genetic relationship between Setaria italica and its wild relative S. viridis using AFLP markers. Theor Appl Genet 100:1061–1066

    Article  Google Scholar 

  • Lee WT (1996) Lineamenta Florae Koreae. Academy Publishing Co., Seoul, p 442 (in Korean)

    Google Scholar 

  • Lee YN (1997) Flora of Korea, vol 2. Kyo-Hak Publishing Co., Seoul, pp 1023–1024 (in Korean)

    Google Scholar 

  • Lee YN (2006) New Flora of Korea, vol 2. Kyo-Hak Publishing Co., Seoul, pp 568–570 (in Korean)

    Google Scholar 

  • Li P, Brutnell TP (2011) Setaria viridis and Setaria italica, model genetic systems for the Panicoid grasses. J Exp Bot 62:3031–3037

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Wu SZ (1996) Traditional maintenance and multiplication of foxtail millet (Setaria italica (L.) P. Beauv) landraces in China. Euphytica 87:33–38

    Article  Google Scholar 

  • Li HW, Li CH, Pao WK (1945) Cytological and genetical studies of the interspecific cross of the cultivated foxtail millet, Setaria italica (L.) Beauv., and the green foxtail millet S. viridis (L.) Beauv. J Am Soc Agron 37:32–54

    Article  Google Scholar 

  • Li Y, Jia J, Wang Y, Wu S (1998) Intraspecific and interspecific variation in Setaria revealed by RAPD analysis. Genet Resour Crop Evol 45:270–285

    Google Scholar 

  • Li W, Zhi H, Wang Y, Li H, Diao X (2012) Assessment of genetic relationship of foxtail millet with its wild ancestor and close relatives by ISSR markers. J Integr Agr 11:556–566

    Article  CAS  Google Scholar 

  • Maddison DR, Maddison WP (2005) MacClade 4: Analysis of phylogeny and character evolution. Version 4.08a. Sinauer, Sunderland, Massachusetts, USA

    Google Scholar 

  • Morrone O, Aagesen L, Scataglini MA, Salariato DL, Denham SS, Chemisquy MA, Sede SM, Giussani LM, Kellogg EA, Zuloaga FO (2012) Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification. Cladistics 28:333–356

    Article  Google Scholar 

  • Naciri Y, Darmency H, Belliard J, Dessaint F, Pernès J (1992) Breeding strategy in foxtail millet, Setaria italica (L.) P. Beauv. following interspecific hybridization. Euphytica 60:97–103

    Google Scholar 

  • Pensiero JF (1999) Las especies sudamericanas del género Setaria (Poaceae, Paniceae). Darwiniana 37:37–151

    Google Scholar 

  • Pohl RW (1951) The genus Setaria in Iowa. Iowa State J Sci 25:501–508

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rominger JM (1962) Taxonomy of Setaria (Gramineae) in North America. Ill Biol Monogr 29:1–132

    Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Wang TY, Li Y, Darmency H (2008) Impact of transgene inheritance on the mitigation of gene flow between crops and their wild relatives: the example of foxtail millet. Genetics 180:969–975

    Article  PubMed Central  PubMed  Google Scholar 

  • Stapf O, Hubbard CK (1930) Setaria. In: Prain D (ed) Flora of tropical Africa, vol 9., Gramineae (Maydeae-Paniceae)W Clowes & Sons, London, pp 768–866

    Google Scholar 

  • Swofford DL (2002) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Taberlet P, Gielly L, Patou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl Mol Biol 17:1105–1109

    Article  CAS  Google Scholar 

  • Till-Bottraud I, Reboud X, Brabant P, Lefranc M, Rherissi B, Vedel F, Darmency H (1992) Outcrossing and hybridization in wild and cultivated foxtail millets: consequences for the release of transgenic crops. Theor Appl Genet 83:940–946

    Article  CAS  PubMed  Google Scholar 

  • Wang RL, Wendel JF, Dekker JH (1995) Weedy adaptation in Setaria spp. I. Isozyme analysis of genetic diversity and population genetic structure in Setaria viridis. Am J Bot 82:308–317

    Article  Google Scholar 

  • Webster RD (1993) Nomenclature of Setaria (Poaceae: Paniceae). Sida 15:447–489

    Google Scholar 

  • Whelan S, Goldman N (1999) Distributions of statistics used for the comparison of models of sequence evolution in phylogenetics. Mol Biol Evol 16:1292–1299

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic Press, San Diego, pp 315–322

    Chapter  Google Scholar 

  • Zhao M, Zhi H, Doust AN, Li W, Wang Y, Li H, Jia G, Wang Y, Zhang N, Diao X (2013) Novel genomes and genome constitutions identified by GISH and 5 s rDNA and knotted1 genomic sequences in the genus Setaria. BMC Genom 14:244

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yongseong Kim for his technical assistance. The anonymous reviewer’s comments and suggestions greatly improved the earlier version of this manuscript. We also thank Janice MS for editing English. This study was supported by a grant from the Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ008548) of the Rural Development Administration, Republic of Korea) to C-S Kim.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seung-Chul Kim.

Additional information

S. Kim and C.-S. Kim contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, CS., Lee, J. et al. Phylogenetic relationships among species of Setaria (Paniceae; Panicoideae; Poaceae) in Korea: insights from nuclear (ITS and kn1) and chloroplast DNA sequence data. Plant Syst Evol 301, 725–736 (2015). https://doi.org/10.1007/s00606-014-1111-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00606-014-1111-z

Keywords

Navigation