Skip to main content
Log in

Portable luminescent fiber- and glove-based nanosensor for multicolor visual detection of tetracycline in food samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An intelligent fluorescent nanoprobe (lignite-CDs-Eu) was constructed by an effective and facile method based on lignite-derived carbon dots (CDs) and lanthanide europium ions (Eu3+), which exhibited high sensitivity, low detection limit (13.35 nM) and visual color variation (from blue to red) under ultraviolet light towards tetracycline (TC) detection. Significantly, portable and economical sensors were developed using lignite-CDs-Eu immobilized fiber material of filter paper and wearable glove with the aid of color extracting and image processing application (APP) in the smartphone. Facile, fast and real-time visual detection of TC in food samples was realized. Moreover, logic gate circuit was also designed to achieve intelligent and semi-quantitative inspection of TC. To some extent, this study extended the cross-application of intelligent computer software in food analytical science, and provided a certain reference for the development of small portable detection sensors which were suitable for convenience and non-professional use in daily life.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Ergul AB, Gokcek I, Celik T, Torun YA (2018) Assessment of inappropriate antibiotic use in pediatric patients: point-prevalence study. Turk Pediatri Arsivi 53:17–23

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huang K, Xia H, Wu Y et al (2018) Effects of earthworms on the fate of tetracycline and fluoroquinolone resistance genes of sewage sludge during vermicomposting. Biores Technol 259:32–39

    Article  CAS  Google Scholar 

  3. Zhu YJ, Wang YY, Zhou S, Jiang XX, Ma X, Liu C (2018) Robust performance of a membrane bioreactor for removing antibiotic resistance genes exposed to antibiotics: role of membrane foulants. Water Res 130:139–150

    Article  CAS  PubMed  Google Scholar 

  4. Rahman MM, Shan J, Yang PP, Shang XX, Xia YQ, Yan XY (2018) Effects of long-term pig manure application on antibiotics, abundance of antibiotic resistance genes (ARGs), anammox and denitrification rates in paddy soils. Environ Pollut 240:368–377

    Article  CAS  PubMed  Google Scholar 

  5. Khan MZH (2020) Recent biosensors for detection of antibiotics in animal derived food. Crit Rev Anal Chem 52:780–790

    Article  PubMed  Google Scholar 

  6. Gao P, Munir M, Xagoraraki I (2012) Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. Sci Total Environ 421:173–183

    Article  PubMed  Google Scholar 

  7. Szekeres E, Baricz A, Chiriac CM et al (2017) Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals. Environ Pollut 225:304–315

    Article  CAS  PubMed  Google Scholar 

  8. He XL, Xu YB, Chen JL et al (2017) Evolution of corresponding resistance genes in the water of fish tanks with multiple stresses of antibiotics and heavy metals. Water Res 124:39–48

    Article  CAS  PubMed  Google Scholar 

  9. Aga DS, Goldfish R, Kulshrestha P (2003) Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes. Analyst 128:658–662

    Article  CAS  PubMed  Google Scholar 

  10. László N, Lányi K, Laczay P (2018) LC-MS study of the heat degradation of veterinary antibiotics in raw milk after boiling. Food Chem 267:178–186

    Article  PubMed  Google Scholar 

  11. Townshend A, Ruengsitagoon W, Thongpoon C, Liawruangrath S (2005) Flow injection chemiluminescence determination of tetracycline. Anal Chim Acta 541:105–111

    Article  CAS  Google Scholar 

  12. Xu H, Mi HY, Guan MM et al (2017) Residue analysis of tetracyclines in milk by HPLC coupled with hollow fiber membranes-based dynamic liquid-liquid micro-extraction. Food Chem 232:198–202

    Article  CAS  PubMed  Google Scholar 

  13. Zhang LN, Wang YL, Jia L et al (2021) Ultrasensitive and visual detection of tetracycline based on dual-recognition units constructed multicolor fluorescent nano-probe. J Hazard Mater 40:124935–212945

    Article  Google Scholar 

  14. Zhang LN, Chen JY, Zhang F, Xu J, Bi N, Gou J, Jia L (2022) Silicon quantum dots and MOFs hybrid multicolor fluorescent nanosensor for ultrasensitive and visual intelligent sensing of tetracycline. Colloids Surf A 652:129853

    Article  CAS  Google Scholar 

  15. Chen J, Xu YL, Li SY, Xu FH, Zhang Q (2021) Ratio fluorescence detection of tetracycline by a Eu3+/NH2-MIL-53(Al) composite. RSC Adv 11:2397–2404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu J, Wang JX, Li YX et al (2023) A wearable gloved sensor based on fluorescent Ag nanoparticles and europium complexes for visualized assessment of tetracycline in food samples. Food Chem 424:136376

    Article  CAS  PubMed  Google Scholar 

  17. Wang XQ, Zhang LH, Hao AY, Shi ZY, Dai CC, Yang YQ, Huang H (2020) Silica-coated silver nanoparticles decorated with fluorescent CdTe quantum dots and DNA aptamers for detection of tetracycline. ACS Applied Nano Materials 3:9796–9803

    Article  CAS  Google Scholar 

  18. Zhang Y, Lv M, Gao PF, Zhang GM, Shi LH, Yuan MJ, Shuang SM (2021) The synthesis of high bright silver nanoclusters with aggregation-induced emission for detection of tetracycline. Sens Actuators, B Chem 326:129009

    Article  CAS  Google Scholar 

  19. Tan H, Chen Y (2012) Silver nanoparticle enhanced fluorescence of europium(III) for detection of tetracycline in milk. Sens Actuators, B Chem 173:262–267

    Article  CAS  Google Scholar 

  20. Jia L, Xu ZT, Zhang LN, Li YX, Zhao TQ, Xu J (2022) The fabrication of water-stable perovskite-europium hybrid polychromatic fluorescence nanosensor for fast visual sensing of tetracycline. Appl Surf Sci 592:153170

    Article  CAS  Google Scholar 

  21. Xu J, Li R, Xu ZT, Chen XZ, Li YX, Zhao TQ, Jia L (2022) Killing two birds with one stone: construction of a rare earth hybrid dual-channel fluorescent biosensor with intelligent broadcasting function and visualized synchronous assessment of multi-objectives. Sens Actuators, B Chem 369:132341

    Article  CAS  Google Scholar 

  22. Shen YZ, Wei YL, Zhu CL, Cao JX, Han DM (2022) Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants.Coord Chem Rev 458:214442

  23. Bui H, Thangavel B, Sharipov M, Chen KC, Shin JH (2023) Smartphone-based portable bio-chemical sensors: exploring recent advancements. Chemosensors 11:468

    Article  CAS  Google Scholar 

  24. Ross GMS, Bremer MGEG, Nielen MWF (2018) Consumer-friendly food allergen detection: moving towards smartphone-based immunoassays. Anal Bioanal Chem 410:5353–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sivakumar R, Lee NY (2021) Recent progress in smartphone-based techniques for food safety and the detection of heavy metal ions in environmental water. Chemosphere 275:130096

    Article  CAS  PubMed  Google Scholar 

  26. Ramírez-Coronel AA, Alameri AA, Altalbawy F et al (2023) Smartphone- facilitated mobile colorimetric probes for rapid monitoring of chemical contaminations in food: advances and outlook. Crit Rev Anal Chem. https://doi.org/10.1080/10408347.2022.2164173

    Article  PubMed  Google Scholar 

  27. Kaur I, Batra V, Bogireddy NKR, Landa SDT, Agarwal V (2023) Detection of organic pollutants, food additives and antibiotics using sustainable carbon dots. Food Chem 406:135029

    Article  CAS  PubMed  Google Scholar 

  28. Jia Y, Zhang CX, Yang CX et al (2019) Lignite-derived carbon quantum dot/TiO2 heterostructure nanocomposites: photoinduced charge transfer properties and enhanced visible light photocatalytic activity. New J Chem 43:18355–18368

    Article  Google Scholar 

  29. Jia L, Chen RJ, Xu J et al (2021) A stick-like intelligent multicolor nano-sensor for the detection of tetracycline: the integration of nano-clay and carbon dots. J Hazard Mater 413:125296

    Article  CAS  PubMed  Google Scholar 

  30. Zhang X, Zhang LN, Bie HY, Xu J, Yuan YQ, Jia L (2023) Intelligent visual detection of OTC enabled by a multicolor fluorescence nanoprobe: europium complex functionalized carbon dots. Spectrochim Acta Part A Mol Biomol Spectrosc 299:122867

    Article  CAS  Google Scholar 

  31. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK (2020) Blue-emitting fluorescent carbon quantum dots from waste biomass sources and their application in fluoride ion detection in water. J Photochem Photobiol, B 209:111940–111951

    Article  CAS  PubMed  Google Scholar 

  32. Zhang LN, Xu YR, Xu J, Zhang HJ, Zhao TQ, Jia L (2022) Intelligent multicolor nano-sensor based on nontoxic dual fluoroprobe and MOFs for colorful consecutive detection of Hg2+ and cysteine. J Hazard Mater 430:128478

    Article  CAS  PubMed  Google Scholar 

  33. Ding H, Yu SB, Wei JS, Xiong HM (2015) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  PubMed  Google Scholar 

  34. Du FF, Shuang SM, Guo ZH, Gong XJ, Dong C, Xian M, Yang ZH (2020) Rapid synthesis of multifunctional carbon nanodots as effective antioxidants, antibacterial agents, and quercetin nanoprobes. Talanta 206:120243

    Article  CAS  PubMed  Google Scholar 

  35. Venkateswarlu S, Viswanath B, Reddy AS, Yoon M (2018) Fungus-derived photoluminescent carbon nanodots for ultrasensitive detection of Hg2+ ions and photoinduced bactericidal activity. Sens Actuators, B Chem 258:172–183

    Article  CAS  Google Scholar 

  36. Lazar P, Mach R, Otyepka M (2019) Spectroscopic fingerprints of graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene. J Phys Chem C 123:10695–10702

    Article  CAS  Google Scholar 

  37. Wu YY, Huang PC, Wu FY (2020) A label-free colorimetric aptasensor based on controllable aggregation of AuNPs for the detection of multiplex antibiotics. Food Chem 304:125377

    Article  CAS  PubMed  Google Scholar 

  38. Al-Hashimi B, Omer KM, Rahman HS (2020) Inner filter effect (IFE) as a simple and selective sensing platform for detection of tetracycline using milk-based nitrogen-doped carbon nanodots as fluorescence probe. Arab J Chem 13:5151–5159

    Article  CAS  Google Scholar 

  39. Si XJ, Wang HL, Wu TH, Wang P (2020) Novel methods for the rapid detection of trace tetracyclines based on the fluorescence behaviours of Maillard reaction fluorescent nanoparticles. RSC Adv 10:43256–43261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian SH, Qiao LN, Xu WX, Jiang K, Wang YH, Lin HW (2018) An inner filter effect-based near-infrared probe for the ultrasensitive detection of tetracyclines and quinolones. Talanta 194:598–603

    Article  PubMed  Google Scholar 

  41. Mukherjee M, Sardar PS, Ghorai SK, Samanta SK, Roy AS, Dasgupta S, Ghosh S (2012) Interaction of multitryptophan protein with drug: An insight into the binding mechanism and the binding domain by time resolved emission, anisotropy, phosphorescence and docking. J Photochem Photobiol, B 115:93–104

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Henan Province (222300420047),the foundation of the Science and Technology Innovation Team in Henan Universities (24IRTSTHN014),the National Natural Science Foundation of China (21805071, 22205256),the Key Scientific Research Project of Henan Province (24A150011), the projects selected for "Double First Class" creation of safety disciplines at Henan Polytechnic University (AQ20230760, AQ20230761), and the Innovative Research Team of Henan Polytechnic University (T2021-2).

Author information

Authors and Affiliations

Authors

Contributions

Lina Zhang: Conceptualization, Methodology, Supervision, Writing–original draft. Xia Zhang: Investigation, Validation, Formal analysis. Yiru Xu: Investigation, Formal analysis, Data curation, Visualization. Jun Xu: Conceptualization, Visualization. Yuanyuan Huang: Methodology, Funding acquisition. Yingqi Yuan: Methodology, Validation. Lei Jia: Funding acquisition, Writing–review & editing, Resources, Supervision.

Corresponding authors

Correspondence to Jun Xu or Lei Jia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2215 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, X., Xu, Y. et al. Portable luminescent fiber- and glove-based nanosensor for multicolor visual detection of tetracycline in food samples. Microchim Acta 191, 225 (2024). https://doi.org/10.1007/s00604-024-06306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06306-3

Keywords

Navigation