Skip to main content
Log in

Dispersive hierarchically porous composites based on defective MOFs as mixed-mode stationary phases for chromatographic separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Defective metal–organic frameworks-based composites with excellent separation properties were obtained. The mesoporous metal–organic frameworks were selected and deliberately designed to be deficient, and they were then combined with polyacrylamide to be modified on the surface of silica microspheres. The prepared composites were employed as mixed-mode stationary phase in chromatographic separation, and they were compared to both conventional microporous metal–organic framework-based columns and commercial columns. It showed improved selectivity and retention toward both hydrophilic and hydrophobic analytes, allowing for the effective separation of nine nucleosides and nucleobases, eight alkaloids, six antibiotics, and five alkylbenzenes. Additionally, the column was used to effectively separate the active ingredients in the daring substance of honeysuckle, revealing a wide range of possible applications. For the same batch of analytes, three batches of distinct materials demonstrated consistent separation effects. It also demonstrated excellent chromatographic repeatability and stability, with relative standard deviations of the retention time and/or column efficiency being found to be less than 0.8% and 0.9%, respectively. The dispersive hierarchically porous composites were demonstrated to be effective in chromatographic separation, and the results expanded the potential uses of defective MOFs with dispersed multi-level pores.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or its supplementary materials].

References

  1. Gong W, Xie Y, Wang X, Kirlikovali KO, Idrees KB, Sha F, Xie H, Liu Y, Chen B, Cui Y, Farha OK (2023) Programmed polarizability engineering in a cyclen-based cubic Zr(IV) metal–organic framework to boost Xe/Kr separation. J Am Chem Soc 145(4):2679–2689

    Article  CAS  PubMed  Google Scholar 

  2. Tang X, Meng C, Rampal N, Li A, Chen X, Gong W, Jiang H, Fairen-Jimenez D, Cui Y, Liu Y (2023) Homochiral porous metal–organic polyhedra with multiple kinds of vertices. J Am Chem Soc 145(4):2561–2571

    Article  CAS  PubMed  Google Scholar 

  3. Yan W, Li S, Yang T, Xia Y, Zhang X, Wang C, Yan Z, Deng F, Zhou Q, Deng H (2020) Molecular vises for precisely positioning ligands near catalytic metal centers in metal-organic frameworks. J Am Chem Soc 142(38):16182–16187

    Article  CAS  PubMed  Google Scholar 

  4. Jiang Z, Xu X, Ma Y, Cho HS, Ding D, Wang C, Wu J, Oleynikov P, Jia M, Cheng J, Zhou Y, Terasaki O, Peng T, Zan L, Deng H (2020) Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction. Nature 586(7830):549–554

    Article  CAS  PubMed  Google Scholar 

  5. Chang M, Wang Q, Qin W, Shi X, Xu G (2021) Correction to rational synthesis of aptamer-functionalized polyethylenimine-modified magnetic graphene oxide composites for highly efficient enrichment and comprehensive metabolomics analysis of exosomes. Anal Chem 93(39):13414–13414

    Article  CAS  PubMed  Google Scholar 

  6. Chen M, Dong R, Zhang J, Tang H, Li Q, Shao H, Jiang X (2021) Nanoscale metal-organic frameworks that are both fluorescent and hollow for self-indicating drug delivery. ACS Appl Mater Interfaces 13(16):18554–18562

    Article  CAS  PubMed  Google Scholar 

  7. Gong W, Chen X, Fahy KM, Dong J, Liu Y, Farha OK, Cui Y (2023) Reticular chemistry in its chiral form: axially chiral Zr(IV)-spiro metal–organic framework as a case study. J Am Chem Soc 145(25):13869–13878

    Article  CAS  PubMed  Google Scholar 

  8. Han D, Liu X, Wu S (2022) Metal organic framework-based antibacterial agents and their underlying mechanisms. Chem Soc Rev 51(16):7138–7169

    Article  CAS  PubMed  Google Scholar 

  9. Liang J, Bin Zulkifli MY, Yong J, Du Z, Ao Z, Rawal A, Scott JA, Harmer JR, Wang J, Liang K (2022) Locking the ultrasound-induced active conformation of metalloenzymes in metal–organic frameworks. J Am Chem Soc 144(39):17865–17875

    Article  CAS  PubMed  Google Scholar 

  10. Chang N, Gu Z-Y, Yan X-P (2010) Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. J Am Chem Soc 132(39):13645–13647

    Article  CAS  PubMed  Google Scholar 

  11. Jiang H-L, Tatsu Y, Lu Z-H, Xu Q (2010) Non-, micro-, and mesoporous metal−organic framework isomers: reversible transformation, fluorescence sensing, and large molecule separation. J Am Chem Soc 132(16):5586–5587

    Article  CAS  PubMed  Google Scholar 

  12. Meng S-S, Han T, Gu Y-H, Zeng C, Tang W-Q, Xu M, Gu Z-Y (2022) Enhancing separation abilities of “low-performance” metal–organic framework stationary phases through size control. Anal Chem 94(41):14251–14256

    Article  CAS  PubMed  Google Scholar 

  13. Si T, Lu X, Zhang H, Wang S, Liang X, Guo Y (2022) Metal-organic framework-based core-shell composites for chromatographic stationary phases. TrAC-Trends Anal Chem 149:116545

    Article  CAS  Google Scholar 

  14. Si T, Wang L, Zhang H, Liang X, Lu X, Wang S, Guo Y (2021) A novel approach for the preparation of core-shell MOF/polymer composites as mixed-mode stationary phase. Talanta 232:122459

    Article  CAS  PubMed  Google Scholar 

  15. Rehman HU, Zhang C, Liu X, Liu Y, Liu J, Tang C, Bai Q (2023) Synthesis of hierarchically porous zirconium-based metal-organic framework@silica core-shell stationary phase through etching strategy for liquid chromatography. J Chromatogr A 1709:464377

    Article  CAS  PubMed  Google Scholar 

  16. Liu C, Quan K, Li H, Shi X, Chen J, Qiu H (2022) Synthesis of chiral functionalized UiO-66-NH2@SiO2 and use of its domain-limiting effect for separating small enantiomers. Chem Commun 58(94):13111–13114

    Article  CAS  Google Scholar 

  17. Liu Q, Song Y, Ma Y, Zhou Y, Cong H, Wang C, Wu J, Hu G, O’Keeffe M, Deng H (2019) Mesoporous cages in chemically robust mofs created by a large number of vertices with reduced connectivity. J Am Chem Soc 141(1):488–496

    Article  CAS  PubMed  Google Scholar 

  18. Cai G, Yan P, Zhang L, Zhou HC, Jiang HL (2021) Metal-organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121(20):12278–12326

    Article  CAS  PubMed  Google Scholar 

  19. Qiao L, Wang S, Li H, Shan Y, Dou A, Shi X, Xu G (2014) A novel surface-confined glucaminium-based ionic liquid stationary phase for hydrophilic interaction/anion-exchange mixed-mode chromatography. J Chromatogr A 1360:240–247

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Zhang F, Yang B, Liang X (2019) A reversed phase/hydrophilic interaction/ion exchange mixed-mode stationary phase for liquid chromatography. Chin Chem Lett 30(2):470–472

    Article  CAS  Google Scholar 

  21. Chen J, Zhang M, Shu J, Liu S, Dong X, Li C, He L, Yuan M, Wu Y, Xu J, Zhang D, Ma F, Wu G, Chai Z, Wang S (2023) Radiation-induced de novo defects in metal–organic frameworks boost CO2 sorption. J Am Chem Soc 145(43):23651–23658

    Article  CAS  PubMed  Google Scholar 

  22. Chen G, Fang XA, Chen Q, Zhang JG, Zhong Z, Xu J, Zhu F, Ouyang G (2017) Boronic acid decorated defective metal–organic framework nanoreactors for high-efficiency carbohydrates separation and labeling. Adv Funct Mater 27(38):1702126

    Article  Google Scholar 

  23. Abánades Lázaro I, Wells CJR, Forgan RS (2020) Multivariate modulation of the Zr MOF UiO-66 for defect-controlled combination anticancer drug delivery. Angew Chem Int Ed 59(13):5211–5217

    Article  Google Scholar 

  24. Bagheri M, Masoomi MY (2022) Quasi-metal organic frameworks: preparation, applications and future perspectives. Coord Chem Rev 468:214643

    Article  CAS  Google Scholar 

  25. Chen G, Huang S, Kou X, Zhu F, Ouyang G (2020) Embedding functional biomacromolecules within peptide-directed metal-organic framework (MOF) nanoarchitectures enables activity enhancement. Angew Chem Int Ed Engl 59(33):13947–13954

    Article  CAS  PubMed  Google Scholar 

  26. Qin JS, Yuan S, Zhang L, Li B, Du DY, Huang N, Guan W, Drake HF, Pang J, Lan YQ, Alsalme A, Zhou HC (2019) Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation. J Am Chem Soc 141(5):2054–2060

    Article  CAS  PubMed  Google Scholar 

  27. Guo Y, Gaiki S (2011) Retention and selectivity of stationary phases for hydrophilic interaction chromatography. J Chromatogr A 1218(35):5920–5938

    Article  CAS  PubMed  Google Scholar 

  28. Peltier R, Bialek A, Kuroki A, Bray C, Martin L, Perrier S (2018) Reverse-phase high performance liquid chromatography (RP-HPLC) as a powerful tool to characterise complex water-soluble copolymer architectures. Polym Chem 9(46):5511–5520

    Article  CAS  Google Scholar 

  29. Xiang X, Wen L, Wang Z, Yang G, Mao J, An X, Kan J (2023) A comprehensive study on physicochemical properties, bioactive compounds, and emulsified lipid digestion characteristics of Idesia polycarpa var. Vestita Diels fruits Oil Food Chem 404:134634

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Taishan Scholar Foundation of Shandong Province (Nos. tsqn202306189) and supported by the National Natural Science Foundation of China (Nos. 82304886), 72nd batch of China Postdoctoral Science Foundation (Nos. 2022M721999), Shandong Provincial Postdoctoral Support Foundation for Innovative Talents (Nos.SDBX2022019), Natural Science Foundation of Shandong Province (Nos.ZR2023QH210), Shandong Province Medical Health Science and Technology Development Plan Project (Nos. 202213030502), and Shandong TCM science and technology development project (Nos. Q-2023030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiantian Si, Xiaojing Liang or Rong Rong.

Ethics declarations

Ethics approval

This research did not involve human or animal samples.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6746 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, T., Wang, S., Guo, Y. et al. Dispersive hierarchically porous composites based on defective MOFs as mixed-mode stationary phases for chromatographic separation. Microchim Acta 191, 198 (2024). https://doi.org/10.1007/s00604-024-06287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06287-3

Keywords

Navigation