Skip to main content
Log in

Peroxidase-like activity and mechanism of gold nanoparticle-modified Ti3C2 MXenes for the construction of H2O2 and ampicillin colorimetric sensors

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Transition metal carbides modified by Au nanoparticles (Au/Ti3C2) were synthesized and developed as a colorimetric sensor for the determination of H2O2 and ampicillin. The surface electrical properties of Ti3C2 were changed, and Au nanoparticles (AuNPs) and gold growth solution were synthesized simultaneously. Au/Ti3C2 was obtained by seed growth method with AuNPs modified on the surface of transition metal carbides, nitrides or carbon-nitrides (Ti3C2 MXenes). The synthesized AuNPs and Ti3C2 had no peroxidase-like activity, but Au/Ti3C2 had. The peroxidase catalytic mechanism was due to electron transfer. The peroxidase activity of Au/Ti3C2 can be utilized for the determination of H2O2. The linear range of Au/Ti3C2 for H2O2 was 1–60 µM, and the detection limit was 0.12 µM (S/N = 3). A colometric sensor for ampicillin detection based on Au/Ti3C2 was further constructed since S in ampicillin formed an Au-S bond with Au/Ti3C2, leading to the weakening of its peroxidase-like property. The change of peroxidase-like property attenuated oxidation of TMB, and the ampicillin content was inversely proportional to the concentration of oxidized TMB, and the blue color of solution faded, which enabled the determination of ampicillin. The linear range for ampicillin was 0.005-0.5 µg mL− 1, and the detection limit was 1.1 ng mL− 1 (S/N = 3). The sensor was applied to the detection of ampicillin in milk and human serum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang Z, Zhang R, Yan X, Fan K (2020) Structure and activity of nanozymes: inspirations for de novo design of nanozymes. Mater Today 41:81–119. https://doi.org/10.1016/j.mattod.2020.08.020

    Article  CAS  Google Scholar 

  2. Lopez-Cantu DO, González-González RB, Sharma A, Bilal M, Parra-Saldívar R, Iqbal HMN (2022) Bioactive material-based nanozymes with multifunctional attributes for biomedicine: expanding antioxidant therapeutics for neuroprotection, cancer, and anti-inflammatory pathologies. Coord Chem Rev 469:214685. https://doi.org/10.1016/j.ccr.2022.214685

    Article  CAS  Google Scholar 

  3. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric Field Effect in Atomically Thin Carbon films. Science 306(5696):666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  4. Shi H, Zhang P, Liu Z, Park S, Lohe MR, Wu Y, Shaygan Nia A, Yang S, Feng X (2021) Ambient-stable two-dimensional Titanium Carbide (MXene) enabled by Iodine Etching. Angew Chem Int Ed Engl 60(16):8689–8693. https://doi.org/10.1002/anie.202015627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li R, Zhang L, Shi L, Wang P (2017) MXene Ti(3)C(2): an effective 2D light-to-heat Conversion Material. ACS Nano 11(4):3752–3759. https://doi.org/10.1021/acsnano.6b08415

    Article  CAS  PubMed  Google Scholar 

  6. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y (2014) 25th anniversary article: MXenes: a New Family of two-dimensional materials. Adv Mater 26(7):992–1005. https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  7. Neampet S, Ruecha N, Qin J, Wonsawat W, Chailapakul O, Rodthongkum N (2019) A nanocomposite prepared from platinum particles, polyaniline and a Ti3C2 MXene for amperometric sensing of hydrogen peroxide and lactate. Microchim Acta 186(12):752. https://doi.org/10.1007/s00604-019-3845-3

    Article  CAS  Google Scholar 

  8. Kumar-Krishnan S, Hernandez-Rangel A, Pal U, Ceballos-Sanchez O, Flores-Ruiz FJ, Prokhorov E, Arias de Fuentes O, Esparza R, Meyyappan M (2016) Surface functionalized halloysite nanotubes decorated with silver nanoparticles for enzyme immobilization and biosensing. J Mater Chem B 4(15):2553–2560. https://doi.org/10.1039/C6TB00051G

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y-W, Liu Q, Wang L, Tang S, Yang H-H, Song H (2018) A colorimetric mercury(II) assay based on the hg(II)-stimulated peroxidase mimicking activity of a nanocomposite prepared from graphitic carbon nitride and gold nanoparticles. Microchim Acta 186(1):7. https://doi.org/10.1007/s00604-018-3137-3

    Article  CAS  Google Scholar 

  10. Lou-Franco J, Das B, Elliott C, Cao C (2020) Gold nanozymes: from Concept to Biomedical Applications. Nano-Micro Lett 13(1):10. https://doi.org/10.1007/s40820-020-00532-z

    Article  CAS  Google Scholar 

  11. Chang J-Y, Wu H, Chen H, Ling Y-C, Tan W (2005) Oriented assembly of au nanorods using biorecognition system. Chem Commun 8:1092–1094. https://doi.org/10.1039/B414059A

    Article  Google Scholar 

  12. He W, Zhou Y-T, Wamer WG, Hu X, Wu X, Zheng Z, Boudreau MD, Yin J-J (2013) Intrinsic catalytic activity of au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging. Biomaterials 34(3):765–773. https://doi.org/10.1016/j.biomaterials.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  13. Liang Y, Liu Y, Zhao P, Chen Y, Lei J, Hou J, Hou C, Huo D (2023) An electrochemical sensor based on FeCo bimetallic single-atom nanozyme for sensitive detection of H2O2. Anal Chim Acta 1281:341867. https://doi.org/10.1016/j.aca.2023.341867

    Article  CAS  Google Scholar 

  14. Liu X, Lu S, Meng W, Zheng B (2018) Residues and health risk assessment of typical antibiotics in aquatic products from the Dongting Lake, China—did you eat antibiotics. Today? Environ Sci Pollution Res 25(4):3913–3921. https://doi.org/10.1007/s11356-017-0745-0

    Article  CAS  Google Scholar 

  15. Ishida M, Kobayashi K, Awata N, Sakamoto F (1999) Simple high-performance liquid chromatography determination of ampicillin in human serum using solid-phase extraction disk cartridges. J Chromatogr B Biomed Sci Appl 727(1):245–248. https://doi.org/10.1016/S0378-4347(98)00588-X

    Article  CAS  PubMed  Google Scholar 

  16. Yee BJ, Shafiqah NF, Mohd-Naim NF, Ahmed MU (2023) A CRISPR/Cas12a-based fluorescence aptasensor for the rapid and sensitive detection of ampicillin. Int J Biol Macromol 242:125211. https://doi.org/10.1016/j.ijbiomac.2023.125211

    Article  CAS  PubMed  Google Scholar 

  17. Wang B, Liu J-H, Yu J, Lv J, Dong C, Li J-R (2020) Broad spectrum detection of veterinary drugs with a highly stable metal-organic framework. J Hazard Mater 382:121018. https://doi.org/10.1016/j.jhazmat.2019.121018

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Xu Y, Jing X, Ma W (2023) SERS-active plasmonic metal NP-CsPbX3 films for multiple veterinary drug residues detection. Food Chem 412:135420. https://doi.org/10.1016/j.foodchem.2023.135420

    Article  CAS  PubMed  Google Scholar 

  19. Peng Q, Jiang N, Qian L, Yue W (2023) Two-dimensional derivatives obtained by oxidation of MXene for simulating the oxidative properties of natural enzymes. 2D Mater 10(4):045013. https://doi.org/10.1088/2053-1583/aceb04

    Article  Google Scholar 

  20. Tang W, Dong Z, Zhang R, Yi X, Yang K, Jin M, Yuan C, Xiao Z, Liu Z, Cheng L (2019) Multifunctional two-Dimensional Core-Shell MXene@Gold nanocomposites for enhanced photo-radio combined therapy in the second Biological window. ACS Nano 13(1):284–294. https://doi.org/10.1021/acsnano.8b05982

    Article  CAS  PubMed  Google Scholar 

  21. Borthakur P, Das MR, Szunerits S, Boukherroub R (2019) CuS decorated Functionalized reduced Graphene Oxide: a dual responsive nanozyme for selective detection and photoreduction of cr(VI) in an aqueous medium. ACS Sustain Chem Eng 7(19):16131–16143. https://doi.org/10.1021/acssuschemeng.9b03043

    Article  CAS  Google Scholar 

  22. Zheng C, Ke W, Yin T, An X (2016) Intrinsic peroxidase-like activity and the catalytic mechanism of gold@carbon dots nanocomposites. RSC Adv 6(42):35280–35286. https://doi.org/10.1039/c6ra01917j

    Article  CAS  Google Scholar 

  23. Andreou C, Mirsafavi R, Moskovits M, Meinhart CD (2015) Detection of low concentrations of ampicillin in milk. Analyst 140(15):5003–5005. https://doi.org/10.1039/c5an00864f

    Article  CAS  PubMed  Google Scholar 

  24. Chang X, Wu Q, Wu Y, Xi X, Cao J, Chu H, Liu Q, Li Y, Wu W, Fang X, Chen F (2022) Multifunctional au modified Ti3C2-MXene for Photothermal/Enzyme Dynamic/Immune synergistic therapy. Nano Lett 22(20):8321–8330. https://doi.org/10.1021/acs.nanolett.2c03260

    Article  CAS  PubMed  Google Scholar 

  25. Qu W, Zhao H, Zhang Q, Xia D, Tang Z, Chen Q, He C, Shu D (2021) Multifunctional Au/Ti3C2 Photothermal membrane with Antibacterial Ability for Stable and Efficient Solar Water Purification under the full spectrum. ACS Sustain Chem Eng 9(34):11372–11387. https://doi.org/10.1021/acssuschemeng.1c03096

    Article  CAS  Google Scholar 

  26. Zhang W, Li X, Cui T, Li S, Qian Y, Yue Y, Zhong W, Xu B, Yue W (2021) PtS2 nanosheets as a peroxidase-mimicking nanozyme for colorimetric determination of hydrogen peroxide and glucose. Mikrochim Acta 188(5):174. https://doi.org/10.1007/s00604-021-04826-w

    Article  CAS  PubMed  Google Scholar 

  27. Su L, Feng J, Zhou X, Ren C, Li H, Chen X (2012) Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Anal Chem 84(13):5753–5758. https://doi.org/10.1021/ac300939z

    Article  CAS  PubMed  Google Scholar 

  28. Lin T, Zhong L, Guo L, Fu F, Chen G (2014) Seeing diabetes: visual detection of glucose based on the intrinsic peroxidase-like activity of MoS2 nanosheets. Nanoscale 6(20):11856–11862. https://doi.org/10.1039/c4nr03393k

    Article  CAS  PubMed  Google Scholar 

  29. Sui N, Liu FY, Wang K, Xie FX, Wang LN, Tang JJ, Liu MH, Yu WW (2017) Nano Au-Hg amalgam for Hg2+ and H2O2 detection. Sens Actuators B-Chemical 252:1010–1015. https://doi.org/10.1016/j.snb.2017.06.081

    Article  CAS  Google Scholar 

  30. Zeng J, Zhang Q, Chen JY, Xia YN (2010) A comparison study of the Catalytic properties of Au-Based nanocages, Nanoboxes, and Nanoparticles. Nano Lett 10(1):30–35. https://doi.org/10.1021/nl903062e

    Article  CAS  PubMed  Google Scholar 

  31. Liu H, Ding YN, Yang BC, Liu ZX, Liu QY, Zhang X (2018) Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sens Actuators B-Chemical 271:336–345. https://doi.org/10.1016/j.snb.2018.05.108

    Article  CAS  Google Scholar 

  32. Ding YN, Yang BC, Liu H, Liu ZX, Zhang X, Zheng XW, Liu QY (2018) FePt-Au ternary metallic nanoparticles with the enhanced peroxidase-like activity for ultrafast colorimetric detection of H2O2. Sens Actuators B-Chemical 259:775–783. https://doi.org/10.1016/j.snb.2017.12.115

    Article  CAS  Google Scholar 

  33. Liu J, Liang J, Wu C, Zhao Y (2019) A doubly-quenched fluorescent probe for low-background detection of mitochondrial H2O2. Anal Chem 91(10):6902–6909. https://doi.org/10.1021/acs.analchem.9b01294

    Article  CAS  PubMed  Google Scholar 

  34. Yang L, Zhang Y, Ren X, Wang B, Yang Z, Song X, Wang W (2020) Fluorescent detection of dynamic H2O2/H2S Redox Event in Living Cells and organisms. Anal Chem 92(6):4387–4394. https://doi.org/10.1021/acs.analchem.9b05270

    Article  CAS  PubMed  Google Scholar 

  35. Chen JX, Wu WW, Huang L, Ma Q, Dong SJ (2019) Self-indicative gold Nanozyme for H2O2 and glucose sensing. Chemistry-a Eur J 25(51):11940–11944. https://doi.org/10.1002/chem.201902288

    Article  CAS  Google Scholar 

  36. Liu C-Y, Wang H-F, Ren Z-G, Braunstein P, Lang J-P (2019) Fine-tuning of luminescence through changes in Au–S bond lengths as a function of temperature or solvent. Inorg Chem 58(13):8533–8540. https://doi.org/10.1021/acs.inorgchem.9b00845

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from “Double First-Class” University project (CPU2018GY25), and Jiangsu Innovation and Enterpreneurship Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanqing Yue.

Ethics declarations

Competing interests

The authors declare no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Peng, Q., Jiang, N. et al. Peroxidase-like activity and mechanism of gold nanoparticle-modified Ti3C2 MXenes for the construction of H2O2 and ampicillin colorimetric sensors. Microchim Acta 191, 195 (2024). https://doi.org/10.1007/s00604-024-06263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06263-x

Keywords

Navigation