Skip to main content
Log in

High-affinity truncated aptamers for detection of Cronobacter spp with magnetic separation-assisted DNAzyme-driven 3D DNA walker

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

After optimizing the original aptamer sequence by truncation strategy, a magnetic separation-assisted DNAzyme-driven 3D DNA walker fluorescent aptasensor was developed for detecting the food-borne pathogen Cronobacter species. Iron oxide magnetic nanoparticles (MNPs) modified with a hybrid of truncated aptamer probe and DNAzyme strand (AP-E1) denoted as MNPs@AP-E1, were employed as capture probes. Simultaneously, a DNAzyme-driven 3D-DNA walker was utilized as the signal amplification element. The substrate strand (Sub) was conjugated with the gold nanoparticles (AuNPs), resulting in the formation of AuNPs@Sub, which served as a 3D walking track. In the presence of the target bacteria and Mg2+, E1-DNAzyme was activated and moved along AuNPs@Sub, continuously releasing the signal probe. Under optimized conditions, a strong linear correlation was observed for Cronobacter sakazakii (C. sakazakii) in the concentration range 101 to 106 CFU mL−1, with a low detection limit of 2 CFU mL−1. The fluorescence signal responses for different Cronobacter species exhibited insignificant differences, with a relative standard deviation of 3.6%. Moreover, the aptasensor was successfully applied to determine  C. sakazakii in real samples with recoveries of 92.86%—108.33%. Therefore, the novel method could be a good candidate for ultra-sensitive and selective detection of Cronobacter species without complex manipulation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1.
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhu F, Zhao G, Dou W (2017) Voltammetric sandwich immunoassay for Cronobacter sakazakii using a screen-printed carbon electrode modified with horseradish peroxidase, reduced graphene oxide, thionine and gold nanoparticles. Microchim Acta 185:45. https://doi.org/10.1007/s00604-017-2572-x

    Article  CAS  Google Scholar 

  2. Jackson EE, Sonbol H, Masood N, Forsythe SJ (2014) Genotypic and phenotypic characteristics of Cronobacter species, with particular attention to the newly reclassified species Cronobacter helveticus, Cronobacter pulveris, and Cronobacter zurichensis. Food Microbiol 44:226–235. https://doi.org/10.1016/j.fm.2014.06.013

    Article  CAS  PubMed  Google Scholar 

  3. Stephan R, Grim CJ, Gopinath GR, Mammel MK, Sathyamoorthy V, Trach LH, Chase HR, Fanning S, Tall BD (2014) Re-examination of the taxonomic status of Enterobacter helveticus, Enterobacter pulveris and Enterobacter turicensis as members of the genus Cronobacter and their reclassification in the genera Franconibacter gen. nov. and Siccibacter gen. nov. as Franconibacter helveticus comb. nov., Franconibacter pulveris comb. nov. and Siccibacter turicensis comb. nov., respectively. Int J Syst Evol Micr 64:3402–3410. https://doi.org/10.1099/ijs.0.059832-0

    Article  Google Scholar 

  4. Craven H, McAuley C, Hannah M, Duffy L, Fegan N, Forsythe S (2020) Applicability of Enterobacteriaceae and coliforms tests as indicators for Cronobacter in milk powder factory environments. Food Microbiol 94:103642. https://doi.org/10.1016/j.fm.2020.103642

    Article  CAS  PubMed  Google Scholar 

  5. Hawkins LRE, Lissner CCR, Sanford JP (1991) Enterobacter sakazakii Bacteremia in an Adult. South Med J 84(6):793–795. https://doi.org/10.1097/00007611-199106000-00033

    Article  CAS  PubMed  Google Scholar 

  6. Shukla S, Haldorai Y, Bajpai VK, Rengaraj A, Hwang SK, Song X, Kim M, Huh YS, Han Y-K (2018) Electrochemical coupled immunosensing platform based on graphene oxide/gold nanocomposite for sensitive detection of Cronobacter sakazakii in powdered infant formula. Biosens Bioelectron 109:139–149. https://doi.org/10.1016/j.bios.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  7. Zhu Y, Wang D (2016) Rapid Detection of Enterobacter Sakazakii in milk Powder using amino modified chitosan immunomagnetic beads. Int J Biol Macromol 93:615–622. https://doi.org/10.1016/j.ijbiomac.2016.09.024

    Article  CAS  PubMed  Google Scholar 

  8. Yi M, He P, Li J, Zhang J, Lin L, Wang L, Zhao L (2022) A portable toolbox based on time-resolved fluoroimmunoassay and immunomagnetic separation for Cronobacter sakazakii on-site detection in dairy. Int Dairy J 133:105425. https://doi.org/10.1016/j.idairyj.2022.105425

    Article  CAS  Google Scholar 

  9. Witkowska E, Korsak D, Kowalska A, Księżopolska-Gocalska M, Niedziółka-Jönsson J, Roźniecka E, Michałowicz W, Albrycht P, Podrażka M, Hołyst R, Waluk J, Kamińska A (2016) Surface-enhanced Raman spectroscopy introduced into the International Standard Organization (ISO) regulations as an alternative method for detection and identification of pathogens in the food industry. Anal Bioanal Chem 409:1555–1567. https://doi.org/10.1007/s00216-016-0090-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hyeon J-Y, Park C, Choi I-S, Holt PS, Seo K-H (2010) Development of multiplex real-time PCR with Internal amplification control for simultaneous detection of Salmonella and Cronobacter in powdered infant formula. Int J Food Microbiol 144:177–181. https://doi.org/10.1016/j.ijfoodmicro.2010.09.022

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Zhang Y, Shi M, Sheng W, Du X, Yuan M, Wang S (2013) Two novel analytical methods based on polyclonal and monoclonal antibodies for the rapid detection of Cronobacter spp.: Development and application in powdered infant formula. LWT Food Sci Technol 56:335–340. https://doi.org/10.1016/j.lwt.2013.11.028

    Article  CAS  Google Scholar 

  12. Wu Y, Xiong Y, Chen X, Luo D, Gao B, Chen J, Huang X, Leng Y, Xiong Y (2019) Plasmonic ELISA based on DNA-directed gold nanoparticle growth for Cronobacter detection in powdered infant formula samples. J Dairy Sci 102:10877–10886. https://doi.org/10.3168/jds.2019-17067

    Article  CAS  PubMed  Google Scholar 

  13. Fan H, Long B, Wu X, Bai Y (2012) Development of a loop-mediated isothermal amplification assay for sensitive and rapid detection of Cronobacter sakazakii. Foodborne Pathog Dis 9:1111–1118. https://doi.org/10.1089/fpd.2012.1193

    Article  CAS  PubMed  Google Scholar 

  14. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:e63. https://doi.org/10.1093/nar/28.12.e63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qi S, Duan N, Khan IM, Dong X, Zhang Y, Wu S, Wang Z (2022) Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv 55:107902. https://doi.org/10.1016/j.biotechadv.2021.107902

    Article  CAS  PubMed  Google Scholar 

  16. Liu M, Yue F, Kong Q, Liu Z, Guo Y, Sun X (2022) Aptamers against pathogenic bacteria: selection strategies and apta-assay/aptasensor application for food safety. J Agric Food Chem 70:5477–5498. https://doi.org/10.1021/acs.jafc.2c01547

    Article  CAS  PubMed  Google Scholar 

  17. Han X (2013) Selection of aptamers for Cronobacter and the applications. Dissertation, Jiangnan University

  18. Shuo Q, Xiaoze D, Sobia N, Minghui L, Nuo D, Zhouping W (2023) Structure-guided engineering of aptamers to enhanced structural stability and application performance in alleviating β-lactoglobulin allergenicity. Chem Eng J 473(1):145450. https://doi.org/10.1016/j.cej.2023.145450

    Article  CAS  Google Scholar 

  19. Yu H, Zhu J, Shen G, Deng Y, Geng X, Wang L (2023) Improving aptamer performance: key factors and strategies. Microchim Acta 190:255. https://doi.org/10.1007/s00604-023-05836-6

    Article  CAS  Google Scholar 

  20. Qi S, Sun Y, Dong X, Khan IM, Lv Y, Zhang Y, Duan N, Wu S, Wang Z (2023) Bispecific aptamer-initiated 3D DNA nanomotor biosensor powered by DNAzyme and entropy-driven circuit for sensitive and specificity detection of lysozyme. Nano Res 16(1):1286–1295. https://doi.org/10.1016/j.aca.2022.340449

    Article  CAS  ADS  Google Scholar 

  21. Li W, Rong Y, Wang J, Li T, Wang Z (2020) MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 169:12605. https://doi.org/10.1016/j.bios.2020.112605

    Article  CAS  Google Scholar 

  22. Song L, Zhuge Y, Zuo X, Li M, Wang F (2022) DNA walkers for biosensing development. Adv Sci 9(18):2200327. https://doi.org/10.1002/advs.202200327

    Article  CAS  Google Scholar 

  23. Xie P, Wang D, Zhao H, Yin N, Hu S, Qin W, Meng L, Pan X, Yuan Y, Yuan R, Peng K (2023) Electrochemical biomimetic enzyme cascade amplification combined with target-induced DNA walker for detection of thrombin. Microchim Acta 190:188. https://doi.org/10.1007/s00604-023-05769-0

    Article  CAS  Google Scholar 

  24. Huang Y, Zhang L, Zhang S, Zhao P, Li L, Ge S, Yu J (2020) Paper-based electrochemiluminescence determination of streptavidin using reticular DNA-functionalized PtCu nanoframes and analyte-triggered DNA walker. Microchim Acta 187:530. https://doi.org/10.1007/s00604-020-04515-0

    Article  CAS  Google Scholar 

  25. Chen J, Zuehlke A, Deng B, Peng H, Hou X, Zhang H (2017) A Target-triggered DNAzyme motor enabling homogeneous. Amplified Detect Proteins Anal Chem 89(23):12888–12895. https://doi.org/10.1021/acs.analchem.7b03529

    Article  CAS  PubMed  Google Scholar 

  26. Chang X, Cheng Y, Wang X, Wang Y, Liu X, Han T, Gao Z, Zhou H (2022) A novel ultrasensitive and fast aptamer biosensor of SEB based on AuNPs-assisted metal-enhanced fluorescence. Sci Total Environ 858:159977. https://doi.org/10.1016/j.scitotenv.2022.159977

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Zamay GS, Zamay TN, Lukyanenko KA, Kichkailo AS (2020) Aptamers increase biocompatibility and reduce the toxicity of magnetic nanoparticles used in biomedicine. Biomedicines 8:59. https://doi.org/10.3390/biomedicines8030059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Y, Duan N, Ma P, Liang Y, Zhu X, Wang Z (2019) Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. J Agric Food Chem 67:2313–2320. https://doi.org/10.1021/acs.jafc.8b06893

    Article  CAS  PubMed  Google Scholar 

  29. Shuangju Z, Zhen W, Xiaojuan N, Xiangqiang Z, Han T, Yuangen W (2022) Novel nanozyme-catalyzed and magnetically assisted colorimetric biosensor for Staphylococcus aureus detection with a low matrix effect from complex environments. Sens Actuators B Chem 373:132752. https://doi.org/10.1016/j.snb.2022.132752

    Article  CAS  Google Scholar 

  30. Wang L, Bao J, Wang L, Zhang F, Li Y (2006) One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chem Eur J 12:6341–6347. https://doi.org/10.1002/chem.200501334

    Article  CAS  PubMed  Google Scholar 

  31. Jung GI, Kim EH, Lim MH, Koo SM (2017) Size control of monodisperse hollow ORMOSIL particles using a self-emulsion process. J Ind Eng Chem 46:386–396. https://doi.org/10.1016/j.jiec.2016.11.008

    Article  CAS  Google Scholar 

  32. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743. https://pubs.acs.org/doi/10.1021/ac00100a008

  33. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV-vis spectra. Anal Chem 79:15–4221. https://doi.org/10.1021/ac0702084

    Article  CAS  Google Scholar 

  34. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318. https://doi.org/10.1021/ac0613582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suh SH, Jaykus L-A (2013) Nucleic acid aptamers for capture and detection of Listeria spp. J Biotechnol 167:454–461. https://doi.org/10.1016/j.jbiotec.2013.07.027

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the National Natural Science Foundation of China (32372423, 3221101215), the National Key Research and Development Program of China (2021YFE0101800), the S&T Plan Project of Jiangsu Provincial (BE2022324), the National First-class Discipline Program of Food Science and Technology (JUFSTR20180303), and Jiangsu Specially-Appointed Professor Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhouping Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 48496 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Ding, N., Qi, S. et al. High-affinity truncated aptamers for detection of Cronobacter spp with magnetic separation-assisted DNAzyme-driven 3D DNA walker. Microchim Acta 191, 130 (2024). https://doi.org/10.1007/s00604-024-06199-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-024-06199-2

Keywords

Navigation