Skip to main content
Log in

Aptasensor for ovarian cancer biomarker detection using nanostructured gold electrodes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The development of an electrochemical aptasensor for the detection of CA125 as an ovarian cancer biomarker using gold nanostructures (GNs) modified electrodes is reported. The GNs were deposited on the surface of fluorine-doped tin oxide electrodes using a simple electrochemical method and the effects of pH and surfactant concentration on the topography and electrochemical properties of the resulting GNs modified electrodes were investigated. The electrodes were characterized using field-emission scanning electron microscopy and X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The best electrode, in terms of the uniformity of the deposited GNs and the increase in electroactive surface area, was used for development of an aptasensor for CA125 tumor marker detection in human serum. Signal amplification was done by using aptamer-conjugated gold nanorods resulting in the detection limit of 2.6 U/ml and a linear range of 10 to 800 U/ml. The results showed that without the need for expensive antibodies, the developed aptasensor could specifically measure the clinically relevant concentrations of the tumor marker in human serum.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Bangar MA et al (2009) Single conducting polymer nanowire chemiresistive label-free immunosensor for cancer biomarker. Anal Chem 81(6):2168–2175

    Article  CAS  PubMed  Google Scholar 

  2. Wang Q et al (2022) Prognostic value of elevated pre-treatment serum CA-125 in epithelial ovarian cancer: a meta-analysis. Front Oncol 12:868061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sasamoto N et al (2019) Development and validation of circulating CA125 prediction models in postmenopausal women. J Ovarian Res 12:1–12

    Article  Google Scholar 

  4. Lamberti I et al (2016) In vitro selection of RNA aptamers against CA125 tumor marker in ovarian cancer and its study by optical biosensing. Methods 97:58–68

    Article  CAS  PubMed  Google Scholar 

  5. Wu L et al (2016) One-step preparation of disposable multi-functionalized g-C3N4 based electrochemiluminescence immunosensor for the detection of CA125. Sens Actuators B Chem 226:62–68

    Article  CAS  Google Scholar 

  6. Arif S et al (2015) Blueprint of quartz crystal microbalance biosensor for early detection of breast cancer through salivary autoantibodies against ATP6AP1. Biosens Bioelectron 65:62–70

    Article  CAS  PubMed  Google Scholar 

  7. Yin Y et al (2010) Colorimetric immunoassay for detection of tumor markers. Int J Mol Sci 11(12):5077–5094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhu Q et al (2015) Ultrasensitive simultaneous detection of four biomarkers based on hybridization chain reaction and biotin–streptavidin signal amplification strategy. Biosens Bioelectron 68:42–48

    Article  CAS  PubMed  Google Scholar 

  9. Jahangiri-Manesh A et al (2022) Molecularly imprinted polymer-based chemiresistive sensor for detection of nonanal as a cancer related biomarker. Microchem J 173:106988

    Article  CAS  Google Scholar 

  10. Zhao L, Han H, Ma Z (2018) Improved screen-printed carbon electrode for multiplexed label-free amperometric immuniosensor: addressing its conductivity and reproducibility challenges. Biosens Bioelectron 101:304–310

    Article  CAS  PubMed  Google Scholar 

  11. Torati SR et al (2017) Hierarchical gold nanostructures modified electrode for electrochemical detection of cancer antigen CA125. Sens Actuators B Chem 243:64–71

    Article  CAS  Google Scholar 

  12. Jin H et al (2017) Aptamer and 5-fluorouracil dual-loading Ag2S quantum dots used as a sensitive label-free probe for near-infrared photoluminescence turn-on detection of CA125 antigen. Biosens Bioelectron 92:378–384

    Article  CAS  PubMed  Google Scholar 

  13. Majd SM, Salimi A (2018) Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal Chim Acta 1000:273–282

    Article  Google Scholar 

  14. Mousazadeh M et al (2022) Detection of hexanal gas as a volatile organic compound cancer biomarker using a nanocomposite of gold nanoparticles and selective polymers. J Electroanal Chem 905:115962

    Article  CAS  Google Scholar 

  15. Zhao L, Ma Z (2018) Facile synthesis of polyaniline-polythionine redox hydrogel: conductive, antifouling and enzyme-linked material for ultrasensitive label-free amperometric immunosensor toward carcinoma antigen-125. Anal Chim Acta 997:60–66

    Article  CAS  PubMed  Google Scholar 

  16. Siampour H et al (2020) Seed-mediated electrochemically developed Au nanostructures with boosted sensing properties: an implication for non-enzymatic glucose detection. Sci Rep 10(1):1–11

    Article  Google Scholar 

  17. Yamashita Y et al (2022) Shape-selective one-step synthesis of branched gold nanoparticles on the crystal surface of redox-active Pd II-macrocycles. Dalton Trans 51(4):1318–1324

    Article  CAS  PubMed  Google Scholar 

  18. Li M et al (2021) Three-step seedless synthesis of ultralong gold nanorods. Opt Mater 116:111095

    Article  CAS  Google Scholar 

  19. Bard AJ, Faulkner LR, White HS (2022) Electrochemical methods: fundamentals and applications. John Wiley & Sons, New Jersey

    Google Scholar 

  20. García-Miranda Ferrari A et al (2018) Determination of the electrochemical area of screen-printed electrochemical sensing platforms. Biosensors 8(2):53

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shams S et al (2019) A sensitive gold-nanorods-based nanobiosensor for specific detection of Campylobacter jejuni and Campylobacter coli. J Nanobiotechnology 17(1):1–13

    Article  Google Scholar 

  22. Wang L et al (2011) Electrochemical synthesis of gold nanostructure modified electrode and its development in electrochemical DNA biosensor. Biosens Bioelectron 30(1):151–157

    Article  CAS  PubMed  Google Scholar 

  23. Guo Z et al (2007) One-step controlled synthesis of anisotropic gold nanostructures with aniline as the reductant in aqueous solution. J Colloid Interface Sci 309(2):518–523

    Article  CAS  PubMed  Google Scholar 

  24. Zhang H, Xu J-J, Chen H-Y (2008) Shape-controlled gold nanoarchitectures: synthesis, superhydrophobicity, and electrocatalytic properties. J Phys Chem C 112(36):13886–13892

    Article  CAS  Google Scholar 

  25. Zhu Z et al (2015) Single domain antibody coated gold nanoparticles as enhancer for Clostridium difficile toxin detection by electrochemical impedance immunosensors. Bioelectrochemistry 101:153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shervedani RK, Mozaffari SA (2006) Impedimetric sensing of uranyl ion based on phosphate functionalized cysteamine self-assembled monolayers. Anal Chim Acta 562(2):223–228

    Article  CAS  Google Scholar 

  27. Ramulu T et al (2013) Nanowires array modified electrode for enhanced electrochemical detection of nucleic acid. Biosens Bioelectron 40(1):258–264

    Article  CAS  PubMed  Google Scholar 

  28. Ni Y et al (2022) Label-free electrochemical aptasensor based on magnetic α-Fe2O3/Fe3O4 heterogeneous hollow nanorods for the detection of cancer antigen 125. Bioelectrochemistry 148:108255

    Article  CAS  PubMed  Google Scholar 

  29. Chen J et al (2019) An electrochemical aptasensing platform for carbohydrate antigen 125 based on the use of flower-like gold nanostructures and target-triggered strand displacement amplification. Microchim Acta 186:1–8

    Article  Google Scholar 

  30. Kumar N, Sharma S, Nara S (2018) Dual gold nanostructure-based electrochemical immunosensor for CA125 detection. Appl Nanosci 8:1843–1853

    Article  CAS  Google Scholar 

  31. Wu M et al (2022) A label-free electrochemical immunosensor for CA125 detection based on CMK-3 (Au/Fc@ MgAl-LDH) n multilayer nanocomposites modification. Talanta 241:123254

    Article  CAS  PubMed  Google Scholar 

  32. Pakchin PS et al (2020) A novel electrochemical immunosensor for ultrasensitive detection of CA125 in ovarian cancer. Biosens Bioelectron 153:112029

    Article  Google Scholar 

  33. Sangili A et al (2020) Label-free electrochemical immunosensor based on one-step electrochemical deposition of AuNP-RGO nanocomposites for detection of endometriosis marker CA 125. ACS Appl Bio Mater 3(11):7620–7630

    Article  CAS  PubMed  Google Scholar 

  34. Pakchin PS et al (2018) Electrochemical immunosensor based on chitosan-gold nanoparticle/carbon nanotube as a platform and lactate oxidase as a label for detection of CA125 oncomarker. Biosens Bioelectron 122:68–74

    Article  Google Scholar 

  35. Li S et al (2021) Molybdenum disulfide supported on metal–organic frameworks as an ultrasensitive layer for the electrochemical detection of the ovarian cancer biomarker CA125. ACS Appl Bio Mater 4(7):5494–5502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Tarbiat Modares University is acknowledged for partial financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Nikkhah.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4091 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirabadizadeh, M., Siampour, H., Abbasian, S. et al. Aptasensor for ovarian cancer biomarker detection using nanostructured gold electrodes. Microchim Acta 191, 2 (2024). https://doi.org/10.1007/s00604-023-06072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06072-8

Keywords

Navigation