Skip to main content
Log in

Enantioseparation by zeolitic imidazolate framework-8-silica hybrid monolithic column with sulfobutylether-β-cyclodextrin as a chiral additive in capillary electrochromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

A Publisher Correction to this article was published on 06 October 2023

This article has been updated

Abstract

A zeolitic imidazolate framework (ZIF)-8-silica hybrid monolithic column was prepared by one-step sol–gel method. The stationary phase in the monolithic column was characterized by Fourier-transform infrared spectra, X-ray diffraction, thermogravimetric analysis, nitrogen adsorption/desorption, and zeta potential. The results showed that ZIF-8-silica hybrid monolithic materials had abundant functional groups, good crystallinity, large specific surface area, and good thermal stability. A capillary electrochromatography (CEC) chiral separation system was for the first time constructed with ZIF-8-silica hybrid monolithic column and sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral additive and was applied to separate the selected single and mixed chiral compounds (13 natural amino acids and 5 chiral pesticides). Under the optimized CEC conditions, all the single analytes achieved baseline separation with resolution of 2.14–5.94 and selectivity factor of 1.06–1.49 in less than 6 min, and the mixed amino acids with similar properties were also simultaneously enantioseparated (Rs ≥ 1.82). Relative standard deviations (RSDs) of migration time and column efficiency were lower than 4.26% and did not change significantly after 200 runs, evidencing excellent reproducibility and stability. These results demonstrate that the application of SBE-β-CD as a chiral additive for ZIF-8-silica hybrid monolithic columns is a promising method for the separation of chiral compounds.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. Li HY, Zhang JL, Jiang LL, Yuan R, Yang X (2023) Chiral plasmonic Au-Ag core shell nanobipyramid for SERS enantiomeric discrimination of biologically relevant small molecules. Anal. Chim. Acta 1239:340740. https://doi.org/10.1016/j.aca.2022.340740

    Article  CAS  PubMed  Google Scholar 

  2. Kenari ME, Putman JI, Singh RP, Fulton BB, Phan H, Haimour RK, Tse K, Berthod A, Lovely CJ, Armstrong DW (2021) Enantiomeric separation of new chiral azole compounds. Molecules 26(1):213. https://doi.org/10.3390/molecules26010213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ribeiro C, Goncalves R, Tiritan ME (2020) Separation of enantiomers using gas chromatography: application in forensic toxicology, food and environmental analysis. Crit Rev Anal Chem 51(8):787–811. https://doi.org/10.1080/10408347.2020.1777522

    Article  CAS  PubMed  Google Scholar 

  4. Panusa A, Rosetti A, Villani C, Cirilli R (2020) Direct HPLC enantioseparation of chemopreventive chiral isothiocyanates sulforaphane and iberin on immobilized amylose-based chiral stationary phases under normal-phase, polar organic and aqueous conditions. Talanta 218:121151. https://doi.org/10.1016/j.talanta.2020.121151

    Article  CAS  PubMed  Google Scholar 

  5. Fanali S, Chankvetadze B (2021) History, advancement, bottlenecks, and future of chiral capillary electrochromatography. J Chromatogr. A 1637:461832. https://doi.org/10.1016/j.chroma.2020.461832

    Article  CAS  PubMed  Google Scholar 

  6. Derazshamshir A, Gokturk I, Yilmaz F, Denizli A (2021) S-citalopram imprinted monolithic columns for capillary electrochromatography enantioseparations. Electrophoresis 42(24):2672–2682. https://doi.org/10.1002/elps.202100222

    Article  CAS  PubMed  Google Scholar 

  7. Qin SL, Cui HS, Chu HT, Gao LD, Li X, Tang YM, You XY, Dong Q (2022) Preparation of a zeolite imidazole skeleton-silica hybrid monolithic column for amino acid analysis via capillary electrochromatography. Electrophoresis 43(16–17):1710–1723. https://doi.org/10.1002/elps.202200086

    Article  CAS  PubMed  Google Scholar 

  8. Sun XD, Chen C, Li XQ, Du YX, Zhao SY, Feng ZJ (2020) Gold nanoparticles coated with a tetramethylammonium lactobionate ionic liquid for enhanced chiral differentiation in open tubular capillary electrochromatography: application to enantioseparation of beta-blockers. Microchim Acta 187(3):170. https://doi.org/10.1007/s00604-020-4121-2

    Article  CAS  Google Scholar 

  9. Ding W, Yu T, Du YX, Sun XD, Feng ZJ, Zhao SY, Ma XF, Ma MX, Chen C (2020) A metal organic framework-functionalized monolithic column for enantioseparation of six basic chiral drugs by capillary electrochromatography. Microchim Acta 187:51. https://doi.org/10.1007/s00604-019-3998-0

    Article  CAS  Google Scholar 

  10. Fonseca J, Gong TH, Jiao L, Jiang HL (2021) Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses. J Mater Chem A 9(17):10562–10611. https://doi.org/10.1039/d1ta01043c

    Article  CAS  Google Scholar 

  11. Jin CX, Shang HB (2021) Synthetic methods, properties and controlling roles of synthetic parameters of zeolite imidazole framework-8: a review. J. Solid State Chem. 297:122040. https://doi.org/10.1016/j.jssc.2021.122040

    Article  CAS  Google Scholar 

  12. Qu QS, Xuan H, Zhang KH, Ding Y, Xu Q (2016) Layer-by-layer assembly of zeolite imidazolate framework-8 as coating material for capillary electrochromatography. Electrophoresis 37(15–16):2175–2180. https://doi.org/10.1002/elps.20160012100

    Article  CAS  PubMed  Google Scholar 

  13. Wang TT, Yang L, Cheng YH, Zhang YL, Ye JN, Chu QC, Cheng GF (2021) Evaluation of homochiral zeolitic imidazolate framework-8 supported open-tubular column by miniaturized capillary electrochromatography with amperometric detection. Microchim Acta 188(11):375. https://doi.org/10.1007/s00604-021-05030-6

    Article  CAS  Google Scholar 

  14. Wang TT, Wang Y, Zhang YL, Cheng YH, Ye JN, Chu QC, Cheng GF (2020) Rapid preparation and evaluation of chiral open-tubular columns supported with bovine serum album and zeolite imidazolate framework-8 for mini-capillary electrochromatography. J Chromatogr A 1625:461284. https://doi.org/10.1016/j.chroma.2020.461284

    Article  CAS  PubMed  Google Scholar 

  15. Miao PD, Gan J, Zhang J, Ma MX, Li XQ, Du YX, Feng ZJ, Zhang L (2022) Carboxymethyl-beta-cyclodextrin and histidine-zeolitic imidazolate framework-8 used for enantioseparation of three basic drugs in open-tubular capillary electrochromatography. Chirality 34(9):1209–1218. https://doi.org/10.1002/chir.23480

    Article  CAS  PubMed  Google Scholar 

  16. De Gauquier P, Vanommeslaeghe K, Vander Heyden Y, Mangelings D (2022) Modelling approaches for chiral chromatography on polysaccharide-based and macrocyclic antibiotic chiral selectors: a review. Anal. Chim. Acta 1198:338861. https://doi.org/10.1016/j.aca.2021.338861

    Article  CAS  PubMed  Google Scholar 

  17. Sun GL, Tang WY, Lu Y, Row KH (2022) Enantioseparation by simultaneous biphasic recognition using mobile phase additive and chiral stationary phase in capillary electrochromatography. J Chromatogr A 1666:462856. https://doi.org/10.1016/j.chroma.2022.462856

    Article  CAS  PubMed  Google Scholar 

  18. Yu RB, Quirino JP (2021) Cyclodextrins as mobile phase additives in open-tubular admicellar electrochromatography for achiral and chiral separations. Microchem J 161:105763. https://doi.org/10.1016/j.microc.2020.105763

    Article  CAS  Google Scholar 

  19. Qiu XJ, Sun WY, Wang CY, Yan JH, Tong SQ (2020) Enantioseparation of acetyltropic acid by countercurrent chromatography with sulfobutyl ether-beta-cyclodextrin as chiral selector. J Sep Sci 43(3):681–688. https://doi.org/10.1002/jssc.201900730

    Article  CAS  PubMed  Google Scholar 

  20. Sun HZ, Tang BB, Wu PY (2018) Hydrophilic hollow zeolitic imidazolate framework-8 modified ultrafiltration membranes with significantly enhanced water separation properties. J Membr Sci 551:283–293. https://doi.org/10.1016/j.memsci.2018.01.053

    Article  CAS  Google Scholar 

  21. Nakanishi K, Minakuchi H, Soga N, Tanaka N (1997) Double pore silica gel monolith applied to liquid chromatography. J Sol-Gel Sci Technol 8(1–3):547–552. https://doi.org/10.1023/A:1018331101606

    Article  CAS  Google Scholar 

  22. Hara T, Makino S, Watanabe Y, Ikegami T, Cabrera K, Smarsly B, Tanaka N (2009) The performance of hybrid monolithic silica capillary columns prepared by changing feed ratios of tetramethoxysilane and methyltrimethoxysilane. J Chromatogr A 1217(1):89–98. https://doi.org/10.1016/j.chroma.2009.11.019

    Article  CAS  PubMed  Google Scholar 

  23. Barroso B, Lubda D, Bischoff R (2003) Applications of monolithic silica capillary columns in proteomics. J Proteome Res 2(6):633–642. https://doi.org/10.1021/pr0340532

    Article  CAS  PubMed  Google Scholar 

  24. Zhu QF, Scriba GKE (2016) Advances in the use of cyclodextrins as chiral selectors in capillary electrokinetic chromatography: fundamentals and applications. Chromatographia 79(21–22):1403–1435. https://doi.org/10.1007/s10337-016-3167-0

    Article  CAS  Google Scholar 

  25. Zhou LF, Lu Y, Sun GL (2021) Open tubular capillary column immobilized with sulfobutylether cyclodextrin for chiral separation in capillary electrochromatography. J Sep Sci 44(10):2037–2045. https://doi.org/10.1002/jssc.202100037

    Article  CAS  PubMed  Google Scholar 

  26. Liu ZJ, Ye L, Xi JN, Wang J, Feng ZG (2021) Cyclodextrin polymers: structure, synthesis, and use as drug carriers. Prog Polym Sci 118:101408. https://doi.org/10.1016/j.progpolymsci.2021.101408

    Article  CAS  Google Scholar 

  27. Zhou L, Cai LZ, Lun J, Zhao M, Guo XJ (2020) Hydroxypropyl β-cyclodextrin nanohybrid monoliths for use in capillary electrochromatography with UV detection: application to the enantiomeric separation of adrenergic drugs, anticholinergic drugs, antidepressants, azoles, and antihistamine. Microchim Acta 187(7):1–10. https://doi.org/10.1007/s00604-020-04317-4

    Article  CAS  Google Scholar 

  28. Guo CJ, Xiao Y (2020) Negatively charged cyclodextrins: synthesis and applications in chiral analysis-a review. Carbohydr Polym 256(2):117517. https://doi.org/10.1016/j.carbpol.2020.117517

    Article  CAS  PubMed  Google Scholar 

  29. Lammerhofer M, Gargano A (2010) Monoliths with chiral surface functionalization for enantioselective capillary electrochromatography. J Pharm Biomed Anal 53(5):1091–1123. https://doi.org/10.1016/j.jpba.2010.05.026

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Chen ZL (2017) Metal-organic frameworks as stationary phase for application in chromatographic separation. J Chromatogr A 1530:1–18. https://doi.org/10.1016/j.chroma.2017.10.065

    Article  CAS  PubMed  Google Scholar 

  31. Terashima H, Mutoh Y, Aizawa S, Taga A, Mikami I, Itabashi Y, Tsutsumiuchi K, Yamamoto A, Kodama S (2023) Direct chiral separation of abscisic acid by high-performance liquid chromatography with a phenyl column and a mobile phase containing γ-cyclodextrin. J Sep Sci 46(6):e2200827. https://doi.org/10.1002/jssc.202200827

    Article  CAS  PubMed  Google Scholar 

  32. Zhang ZB, Wu MH, Wu RA, Dong J, Ou JJ, Zou HF (2011) Preparation of perphenylcarbamoylated β-cyclodextrin-silica hybrid monolithic column with “one-pot” approach for enantioseparation by capillary liquid chromatography. Anal Chem 83(9):3616–3622. https://doi.org/10.1021/ac200414r

    Article  CAS  PubMed  Google Scholar 

  33. Zhou L, Liu BB, Jin G, Jiang Z, Guo XJ (2020) Preparation of sulfobutylether β-cyclodextrin-silica hybrid monolithic column, and its application to capillary electrochromatography of chiral compounds. J Chromatogr A 1620:460932. https://doi.org/10.1016/j.chroma.2020.460932

    Article  CAS  PubMed  Google Scholar 

  34. Bao WH, Zhang CN, Yang M, Nan D, Liu TL, Guo XJ, Fang LL (2021) Preparation and modeling study of novel carboxymethyl-β-cyclodextrin silica hybrid monolithic column for enantioseparations in capillary electrochromatography. Microchem J 170:106719. https://doi.org/10.1016/j.microc.2021.106719

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the support of the Fundamental Research Funds in Heilongjiang Provincial Universities (No. 145209501) and the second batch of Ministry of Education supply and demand docking employment and education projects.

Author information

Authors and Affiliations

Authors

Contributions

L.D. Gao, S.L. Qin, and H.S. Cui contribute equally to this work.

Corresponding author

Correspondence to Shili Qin.

Ethics declarations

Ethical approval

This article does not contain any studies with human or animal subjects.

Consent to participate

Informed consent is not applicable for this study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article, the wrong Fig. 3 has been introduced during production. Given here is the correct figure.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Cui, H., Guo, X. et al. Enantioseparation by zeolitic imidazolate framework-8-silica hybrid monolithic column with sulfobutylether-β-cyclodextrin as a chiral additive in capillary electrochromatography. Microchim Acta 190, 315 (2023). https://doi.org/10.1007/s00604-023-05908-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05908-7

Keywords

Navigation