Skip to main content
Log in

Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive molecularly imprinted ratiometric fluorescence sensor was constructed for the first time to visually detect tetrabromobisphenol A (TBBPA). The blue fluorescent carbon quantum dots (CQDs) were coated with SiO2 through the reverse microemulsion method to obtain a stable internal reference signal CQDs@SiO2. The ratiometric fluorescence sensor was finally prepared using red fluorescent CdTe QDs as the response signal in the presence of CQDs@SiO2. When the molecularly imprinted polymers were combined with TBBPA, the fluorescence of CdTe QDs (Ex = 365 nm, Em = 665 nm) was rapidly quenched, while that of CQDs (Ex = 365 nm, Em = 441 nm) remained stable, resulting in a noticeable fluorescence color change. Moreover, the fluorescence intensity ratio (I665/I441)0/(I665/I441) of the sensor showed a linear response to TBBPA in the concentration range 0.1 to 10 μM with a low detection limit of 3.8 nM. The prepared sensor was successfully applied to detect TBBPA in water samples. The recoveries were in the range 98.2–103%, with relative standard deviations lower than 2.5%. Furthermore, a fluorescent test strip for visual monitoring of TBBPA was constructed to streamline the procedure. The excellent results demonstrate that the prepared test strip has a broad prospect for the offline detection of pollutants.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li Y, Han D, Arai Y, Fu X, Li X, Huang W (2019) Kinetics and mechanisms of debromination of tetrabromobisphenol A by Cu coated nano zerovalent iron. Chem Eng J 373:95–103. https://doi.org/10.1016/j.cej.2019.04.182

    Article  CAS  Google Scholar 

  2. Chen X, Zheng M, Zhou Y, Tong J, Wu K (2015) Electrochemical enhancement of acetylene black film as sensitive sensing platform for toxic tetrabromobisphenol A. RSC Adv 5:105837–105843. https://doi.org/10.1039/c5ra24040a

    Article  CAS  Google Scholar 

  3. Zhou T, Zhao X, Xu Y, Tao Y, Luo D, Hu L, Jing T, Zhou Y, Wang P, Mei S (2020) Electrochemical determination of tetrabromobisphenol A in water samples based on a carbon nanotubes@zeolitic imidazole framework-67 modified electrode. RSC Adv 10:2123–2132. https://doi.org/10.1039/c9ra06980a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Jiao Y, Guo Y, Yang Y (2013) Determination of bisphenol-A, 2,4-dichlorophenol, bisphenol-AF and tetrabromobisphenol-A in liquid foods and their packaging materials by vortex-assisted supramolecular solvent microextraction/high-performance liquid chromatography. Anal Methods 5:5037–5043. https://doi.org/10.1039/c3ay40586a

    Article  CAS  Google Scholar 

  5. Inthavong C, Hommet F, Bordet F, Rigourd V, Guerin T, Dragacci S (2017) Simultaneous liquid chromatography-tandem mass spectrometry analysis of brominated flame retardants (tetrabromobisphenol A and hexabromocyclododecane diastereoisomers) in French breast milk. Chemosphere 186:762–769. https://doi.org/10.1016/j.chemosphere.2017.08.020

    Article  CAS  PubMed  Google Scholar 

  6. Bu D, Zhuang H, Zhou X, Yang G (2014) Biotin-streptavidin enzyme-linked immunosorbent assay for detecting Tetrabromobisphenol A in electronic waste. Talanta 120:40–46. https://doi.org/10.1016/j.talanta.2013.11.080

    Article  CAS  PubMed  Google Scholar 

  7. Ansari S, Ansari MS, Satsangee SP, Jain R (2021) Bi2O3/ZnO nanocomposite: Synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J Pharm Anal 11:57–67. https://doi.org/10.1016/j.jpha.2020.03.013

    Article  PubMed  Google Scholar 

  8. Ansari S, Ansari MS, Satsangee SP, Jain R (2019) WO3 decorated Graphene nanocomposite based electrochemical sensor: A prospect for the detection of anti-anginal drug. Anal Chim Acta 1046:99–109. https://doi.org/10.1016/j.aca.2018.09.028

    Article  CAS  PubMed  Google Scholar 

  9. Ansari S, Ansari MS, Devnani H, Satsangee SP, Jain R (2018) CeO2/g-C3N4 nanocomposite: A perspective for electrochemical sensing of anti-depressant drug. Sens Actuators B Chem 273:1226–1236. https://doi.org/10.1016/j.snb.2018.06.036

    Article  CAS  Google Scholar 

  10. Devnani H, Ansari S, Satsangee SP, Jain R (2017) ZrO2-Graphene-Chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater Today Chem 4:17–25. https://doi.org/10.1016/j.mtchem.2017.02.004

    Article  Google Scholar 

  11. Ansari S, Ansari MS, Satsangee SP, Alam MG, Jain R (2022) Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. J Nanostruct Chem. https://doi.org/10.1007/s40097-022-00473-6

    Article  Google Scholar 

  12. Myriam D-Á, Antonio M-E (2021) Molecularly imprinted polymer-quantum dot materials in optical sensors: An overview of their synthesis and applications. Biosensors 11:79. https://doi.org/10.3390/bios11030079

    Article  CAS  Google Scholar 

  13. Chen YP, Wang DN, Yin YM, Wang LY, Wang XF, Xie MX (2012) Quantum dots capped with dummy molecularly imprinted film as luminescent sensor for the determination of tetrabromobisphenol A in water and soils. J Agric Food Chem 60:10472–10479. https://doi.org/10.1021/jf3026138

    Article  CAS  PubMed  Google Scholar 

  14. Baldoneschi V, Palladino P, Banchini M, Minunni M, Scarano S (2020) Norepinephrine as new functional monomer for molecular imprinting: An applicative study for the optical sensing of cardiac biomarkers. Biosens Bioelectron. 157:112161. https://doi.org/10.1016/j.bios.2020.112161

    Article  CAS  PubMed  Google Scholar 

  15. Li Z, Hu J, Lou Z, Zeng L, Zhu M (2021) Molecularly imprinted photoelectrochemical sensor for detecting tetrabromobisphenol A in indoor dust and water. Microchim Acta 188:320. https://doi.org/10.1007/s00604-021-04980-1

    Article  CAS  Google Scholar 

  16. Saraji M, Alijani S (2021) A molecularly imprinted polymer on chromium (III) oxide nanoparticles for spectrofluorometric detection of bisphenol A. Spectrochim Acta A Mol Biomol Spectrosc 255:119711. https://doi.org/10.1016/j.saa.2021.119711

    Article  CAS  PubMed  Google Scholar 

  17. Li Y, He W, Peng Q, Hou L, He J, Li K (2019) Aggregation-induced emission luminogen based molecularly imprinted ratiometric fluorescence sensor for the detection of Rhodamine 6G in food samples. Food Chem 287:55–60. https://doi.org/10.1016/j.foodchem.2019.02.081

    Article  CAS  PubMed  Google Scholar 

  18. Song E, Han W, Xu H, Jiang Y, Cheng D, Song Y, Swihart MT (2014) Magnetically encoded luminescent composite nanoparticles through layer-by-layer self-assembly. Chem Eur J 20:14642–14649. https://doi.org/10.1002/chem.201403699

    Article  CAS  PubMed  Google Scholar 

  19. Hao T, Wei X, Nie Y, Xu Y, Yan Y, Zhou Z (2016) An eco-friendly molecularly imprinted fluorescence composite material based on carbon dots for fluorescent detection of 4-nitrophenol. Microchim Acta 183:2197–2203. https://doi.org/10.1007/s00604-016-1851-2

    Article  CAS  Google Scholar 

  20. Long R, Li T, Tong C, Wu L, Shi S (2019) Molecularly imprinted polymers coated CdTe quantum dots with controllable particle size for fluorescent determination of p-coumaric acid. Talanta 196:579–584. https://doi.org/10.1016/j.talanta.2019.01.007

    Article  CAS  PubMed  Google Scholar 

  21. Fu Q, Long C, Qin L, Jiang Z, Qing T, Zhang P, Feng B (2021) Fluorescent and colorimetric dual-mode detection of tetracycline in wastewater based on heteroatoms-doped reduced state carbon dots. Environ Pollut 283:117109. https://doi.org/10.1016/j.envpol.2021.117109

    Article  CAS  PubMed  Google Scholar 

  22. Gui W, Wang H, Liu Y, Ma Q (2018) Ratiometric fluorescent sensor with molecularly imprinted mesoporous microspheres for malachite green detection. Sens Actuators B Chem 266:685–691. https://doi.org/10.1016/j.snb.2018.03.176

    Article  CAS  Google Scholar 

  23. Guan Y, Yang Y, Wang X, Yuan H, Yang Y, Li N, Ni C (2021) Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. J Mol Liq 327:114783. https://doi.org/10.1016/j.molliq.2020.114783

  24. Venkatachalam V, Ganapathy S, Priyadarshini N, Perumal I (2022) Indium doped CdTe colloidal quantum dots stabilised in aqueous medium for white light emission. Colloids Surf A: Physicochem Eng Aspects 653:129891. https://doi.org/10.1016/j.colsurfa.2022.129891

    Article  CAS  Google Scholar 

  25. Kanagasubbulakshmi S, Kadirvelu K (2018) Nano interface potential influences in CdTe quantum dots and biolabeling. Appl Nanosci 8:285–295. https://doi.org/10.1007/s13204-018-0774-0

    Article  CAS  Google Scholar 

  26. Shao H, Li C, Ma C, Sun L, Chen R, Cheng R, Liu Y, Yan Y, Sun Q, Wu C (2017) An ion-imprinted material embedded carbon quantum dots for selective fluorometric determination of lithium ion in water samples. Microchim Acta 184:4861–4868. https://doi.org/10.1007/s00604-017-2493-8

    Article  CAS  Google Scholar 

  27. Farahmandzadeh F, Molaei M, Karimipour M, Shamsi AR (2020) Highly luminescence CdTe/ZnSe core–shell QDs; synthesis by a simple low temperature approach. J Mater Sci Mater Electron 31:12382–12388. https://doi.org/10.1007/s10854-020-03784-y

    Article  CAS  Google Scholar 

  28. Gong T, Tang Y (2020) Preparation of multifunctional nanocomposites Fe3O4@SiO2-EDTA and its adsorption of heavy metal ions in water solution. Water Sci Technol 81:170–177. https://doi.org/10.2166/wst.2020.099

    Article  CAS  PubMed  Google Scholar 

  29. Zhu W, Zhou Y, Liu S, Luo M, Du J, Fan J, Xiong H, Peng H (2021) A novel magnetic fluorescent molecularly imprinted sensor for highly selective and sensitive detection of 4-nitrophenol in food samples through a dual-recognition mechanism. Food Chem 348:129126. https://doi.org/10.1016/j.foodchem.2021.129126

    Article  CAS  PubMed  Google Scholar 

  30. Raksawong P, Nurerk P, Chullasat K, Kanatharana P, Bunkoed O (2019) A polypyrrole doped with fluorescent CdTe quantum dots and incorporated into molecularly imprinted silica for fluorometric determination of ampicillin. Microchim Acta 186:338. https://doi.org/10.1007/s00604-019-3447-0

    Article  CAS  Google Scholar 

  31. Jia M, Zhang Z, Li J, Shao H, Chen L, Yang X (2017) A molecular imprinting fluorescence sensor based on quantum dots and a mesoporous structure for selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid. Sens Actuators B Chem 252:934–943. https://doi.org/10.1016/j.snb.2017.06.090

    Article  CAS  Google Scholar 

  32. Zhou Y, Qu ZB, Zeng Y, Zhou T, Shi G (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron 52:317–323. https://doi.org/10.1016/j.bios.2013.09.022

    Article  CAS  PubMed  Google Scholar 

  33. Yang Q, Li J, Wang X, Peng H, Xiong H, Chen L (2019) Dual-emission color-controllable nanoparticle based molecular imprinting ratiometric fluorescence sensor for the visual detection of Brilliant Blue. Sens Actuators B Chem 284:428–436. https://doi.org/10.1016/j.snb.2018.12.134

    Article  CAS  Google Scholar 

  34. Wang X, Yu J, Wu X, Fu J, Kang Q, Shen D, Li J, Chen L (2016) A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2, 4-dichlorophenoxyacetic acid (2, 4-D). Biosens Bioelectron 81:438–444. https://doi.org/10.1016/j.bios.2016.03.031

    Article  CAS  PubMed  Google Scholar 

  35. Chao J, Zeng L, Li R, Zhou Y (2021) Molecularly imprinted polymer-capped wrinkled silica-quantum dot hybrid particles for fluorescent determination of tetra bromo bisphenol A. Microchim Acta 188:126. https://doi.org/10.1007/s00604-021-04779-0

    Article  CAS  Google Scholar 

  36. Feng J, Tao Y, Shen X, Jin H, Zhou T, Zhou Y, Hu L, Luo D, Mei S, Lee Y-I (2019) Highly sensitive and selective fluorescent sensor for tetrabromobisphenol-A in electronic waste samples using molecularly imprinted polymer coated quantum dots. Microchem J 144:93–101. https://doi.org/10.1016/j.microc.2018.08.041

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Program No. 21806097), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0104), and Research Starting Foundation of Shaanxi University of Science and Technology (Program No. 2016BJ-80).

Author information

Authors and Affiliations

Authors

Contributions

Yanming Shao: Conceptualization; Investigation; Methodology; Data curation; Supervision; Writing-original draft; Writing-review & editing. Peng Wang: Investigation; Methodology; Formal analysis; Data curation; Validation; Writing-original draft; Writing-review & editing. Rui Zheng: Methodology; Formal analysis. Zhizhen Zhao: Investigation; Data curation. Jun An: Resources; Validation. Caifeng Hao: Data curation. Mengyi Kang: Validation.

Corresponding author

Correspondence to Yanming Shao.

Ethics declarations

Conflicts of interest

The authors declare they have no conflicts of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1546 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Wang, P., Zheng, R. et al. Preparation of molecularly imprinted ratiometric fluorescence sensor for visual detection of tetrabromobisphenol A in water samples. Microchim Acta 190, 161 (2023). https://doi.org/10.1007/s00604-023-05745-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05745-8

Keywords

Navigation