Skip to main content
Log in

Integration of three non-interfering SERS probes combined with ConA-functionalized magnetic nanoparticles for extraction and detection of multiple foodborne pathogens

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sandwich-structured SERS biosensor has been constructed for simultaneous detection of multiple pathogenic bacteria, consisting of non-interfering SERS probes for bacterial labeling and ConA-functionalizd magnetic nanoparticles for bacteria extraction. A the preparation method of PP3 SERS probe with high Raman activity is reported for the first time. Since the PP3 SERS probe has a very strong Raman peak at 2081 cm−1 in the “Raman silent region,” the mixed SERS probe formed with MP1 and DP2 can meet the needs of multiple foodborne pathogen detection. Significantly, S. aureus, E. coli, and P. aeruginosa can be successfully extracted upon external magnetic field, and the limit of detection (LOD) is 1 CFU‧mL−1, lower than that of the congeneric detectors. This work paves a new way for the construction of a novel detector and absorbent for different bacteria in complex samples by using SERS probe.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhou X, Hu Z, Yang D, Xie S, Jiang Z, Niessner R, Haisch C, Zhou H, Sun P (2020) Bacteria detection: from powerful SERS to its advanced compatible techniques. Adv Sci (Weinh) 7(23):2001739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aijuka M, Buys EM (2019) Persistence of foodborne diarrheagenic Escherichia coli in the agricultural and food production environment: Implications for food safety and public health. Food Microbiol 82:363–370

    Article  PubMed  Google Scholar 

  3. Majdinasab M, Hayat A, Marty JL (2018) Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends in Anal Chem 107:60–77

    Article  CAS  Google Scholar 

  4. Mi F, Hu C, Wang Y, Wang L, Peng F, Geng P, Guan M (2022) Recent advancements in microfluidic chip biosensor detection of foodborne pathogenic bacteria: a review. Anal Bioanal Chem 414(9):2883–2902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cao Y, Ye C, Zhang C, Zhang G, Hu H, Zhang Z, Fang H, Zheng J, Liu H (2022) Simultaneous detection of multiple foodborne bacteria by loop-mediated isothermal amplification on a microfluidic chip through colorimetric and fluorescent assay. Food Control 134:108694

    Article  CAS  Google Scholar 

  6. Hao X, Yeh P, Qin Y, Jiang Y, Qiu Z, Li S, Le T, Cao X (2019) Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal Chim Acta 1056:96–107

    Article  CAS  PubMed  Google Scholar 

  7. de Rutte J, Dimatteo R, Zhu S, Archang MM, Di Carlo D (2022) Sorting single-cell microcarriers using commercial flow cytometers. SLAS Technol 27(2):150–159

    Article  PubMed  Google Scholar 

  8. Postollec F, Falentin H, Pavan S, Combrisson J, Sohier D (2011) Recent advances in quantitative PCR (qPCR) applications in food microbiology. Food Microbiol 28(5):848–861

    Article  CAS  PubMed  Google Scholar 

  9. Zhao Y, Zeng D, Yan C, Chen W, Dai J (2020) Rapid and accurate detection of Escherichia coli O157:H7 in beef using microfluidic wax-printed paper-based ELISA. Analyst 145(8):3106–3115

    Article  CAS  PubMed  Google Scholar 

  10. Zhao X, Li M, Liu Y (2019) Microfluidic-based approaches for foodborne pathogen detection. Microorganisms 7(10):381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duan N, Shen M, Qi S, Wang W, Wu S, Wang Z (2020) A SERS aptasensor for simultaneous multiple pathogens detection using gold decorated PDMS substrate. Spectroch Acta Part A: Mole Biomole Spectrosc 230:118103

    Article  CAS  Google Scholar 

  12. Wang P, Sun Y, Li X, Wang L, Xu Y, He L, Li G (2021) Recent advances in dual recognition based surface enhanced Raman scattering for pathogenic bacteria detection: a review. Anal Chim Acta 1157:338279

    Article  CAS  PubMed  Google Scholar 

  13. Hu C, Ma L, Mi F, Guan M, Guo C, Peng F, Sun S, Wang X, Liu T, Li J (2021) SERS-based immunoassay using core–shell nanotags and magnetic separation for rapid and sensitive detection of cTnI. New J Chem 45(6):3088–3094

    Article  CAS  Google Scholar 

  14. Li Y, Lu C, Zhou S, Fauconnier M, Gao F, Fan B, Lin J, Wang F, Zheng J (2020) Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags. Sensors and Actuators B: Chem 317:128182

    Article  CAS  Google Scholar 

  15. Nolan JP, Duggan E, Liu E, Condello D, Dave I, Stoner SA (2012) Single cell analysis using surface enhanced Raman scattering (SERS) tags. Methods 57(3):272–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei Q, Lin J, Liu F, Wen C, Li N, Huang G, Luo Z (2019) Synthesis of MBA-encoded silver/silica core-shell nanoparticles as novel SERS Tags for biosensing gibberellin A3 based on Au@Fe3O4 as substrate. Sensors 19(23):5152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Feng Y, Wang Y, Wang H, Chen T, Tay YY, Yao L, Yan Q, Li S, Chen H (2012) Engineering “hot” nanoparticles for surface-enhanced raman scattering by embedding reporter molecules in metal layers. Small 8(2):246–251

    Article  CAS  PubMed  Google Scholar 

  18. Zhao Y, Smith ME, Jinnan Z, Yan Z, Peng Z (2018) Determination of trichloroethylene by using self-referenced SERS and gold-core/silver-shell nanoparticles. Mikrochimica Acta 185(7):330

    Article  Google Scholar 

  19. Chen Q, Yang M, Yang X, Li H, Guo Z, Rahma MH (2018) A large Raman scattering cross-section molecular embedded SERS aptasensor for ultrasensitive aflatoxin B1 detection using CS-Fe3O4 for signal enrichment. Spectrochimica Acta Part A: Mole Biomol Spectrosc 189:147–153

    Article  CAS  Google Scholar 

  20. Yang M, Liu G, Mehedi HM, Ouyang Q, Chen Q (2017) A universal SERS aptasensor based on DTNB labeled GNTs/Ag core-shell nanotriangle and CS-Fe3O4 magnetic-bead trace detection of aflatoxin B1. Anal Chim Acta 986:122–130

    Article  CAS  PubMed  Google Scholar 

  21. Shan Y, Wang M, Shi Z, Lei M, Wang X, Wu F, Ran H, Arumugam GM, Cui Q, Xu C (2020) SERS-encoded nanocomposites for dual pathogen bioassay. J Mater Sci Technol 43:161–167

    Article  CAS  Google Scholar 

  22. Liu Y, Zhu W, Hu J, Shen A (2021) Recent advances in plasmonic Prussian blue-based SERS nanotags for biological application. Nanoscale Adv 3(23):6568–6579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yin Y, Li Q, Ma S, Liu H, Dong B, Yang J, Liu D (2017) Prussian blue as a highly sensitive and background-free resonant raman reporter. Anal Chem 89(3):1551–1557

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Zeng E, Di H, Li Q, Ji J, Yang J, Liu D (2019) When Prussian blue meets porous gold nanoparticles: a high signal-to-background surface-enhanced raman scattering probe for cellular biomarker imaging. Adv Biosyst 3(7):1900046

    Article  Google Scholar 

  25. Zhang C, Wang C, Xiao R, Tang L, Huang J, Wu D, Liu S, Wang Y, Zhang D, Wang S, others (2018) Sensitive and specific detection of clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags. J Mater Chem B 6(22):3751–3761

    Article  CAS  PubMed  Google Scholar 

  26. Kearns H, Goodacre R, Jamieson LE, Graham D, Faulds K (2017) SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal Chem 89(23):12666–12673

    Article  CAS  PubMed  Google Scholar 

  27. Mu L, Yin X, Liu J, Wu L, Bian X, Wang Y, Ye J (2017) Identification and characterization of a mannose-binding lectin from Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol 67:244–253

    Article  CAS  PubMed  Google Scholar 

  28. Mi F, Guan M, Hu C, Peng F, Sun S, Wang X (2021) Application of lectin-based biosensor technology in the detection of foodborne pathogenic bacteria: a review. Analyst 146(2):429–443

    Article  CAS  PubMed  Google Scholar 

  29. Hu C, Peng F, Mi F, Wang Y, Geng P, Pang L, Ma Y, Li G, Li Y, Guan M (2022) SERS-based boronate affinity biosensor with biomimetic specificity and versatility: surface-imprinted magnetic polymers as recognition elements to detect glycoproteins. Anal Chim Acta 1191:339289

    Article  CAS  PubMed  Google Scholar 

  30. Huang X, Zhang Z, Chen L, Lin Y, Zeng R, Xu J, Chen S, Zhang J, Cai H, Zhou H, others (2022) Multifunctional Au nano-bridged nanogap probes as ICP-MS/SERS dual-signal tags and signal amplifiers for bacteria discriminating, quantitative detecting and photothermal bactericidal activity. Biosens Bioelectron 212:114414

    Article  CAS  PubMed  Google Scholar 

  31. Qi X, Ye Y, Wang H, Zhao B, Xu L, Zhang Y, Wang X, Zhou N (2022) An ultrasensitive and dual-recognition SERS biosensor based on Fe3O4@Au-Teicoplanin and aptamer functionalized Au@Ag nanoparticles for detection of Staphylococcus aureus. Talanta 250:123648

    Article  CAS  PubMed  Google Scholar 

  32. Yuan K, Mei Q, Guo X, Xu Y, Yang D, Sánchez BJ, Sheng B, Liu C, Hu Z, Yu G (2018) Antimicrobial peptide based magnetic recognition elements and Au@Ag-GO SERS tags with stable internal standards: a three in one biosensor for isolation, discrimination and killing of multiple bacteria in whole blood. Chem Sci 9(47):8781–8795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yang Y, Li G, Wang P, Fan L, Shi Y (2022) Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags. Talanta 243:123369

    Article  CAS  PubMed  Google Scholar 

  34. Wang J, Wu X, Wang C, Rong Z, Ding H, Li H, Li S, Shao N, Dong P, Xiao R, others (2016) Facile synthesis of Au-coated magnetic nanoparticles and their application in bacteria detection via a SERS method. ACS Appl Mater Interfaces 8(31):19958–19967

    Article  CAS  PubMed  Google Scholar 

  35. Chattopadhyay S, Sabharwal PK, Jain S, Kaur A, Singh H (2019) Functionalized polymeric magnetic nanoparticle assisted SERS immunosensor for the sensitive detection of S. typhimurium. Anal Chim Acta 1067:98–106

    Article  CAS  PubMed  Google Scholar 

  36. Pang Y, Wan N, Shi L, Wang C, Sun Z, Xiao R, Wang S (2019) Dual-recognition surface-enhanced Raman scattering(SERS)biosensor for pathogenic bacteria detection by using vancomycin-SERS tags and aptamer-Fe3O4@Au. Anal Chim Acta 1077:288–296

    Article  CAS  PubMed  Google Scholar 

  37. Zhang A, Tao G, Wang J (2018) Assembly of bioconjugated rod-nanotags and multilayer plasmonic nanorod-array for ultrasensitive SERS detection of S. aureus bacteria. J Nanopart Res 20(4):97

  38. Li Y, Lu C, Zhou S, Fauconnier M, Gao F, Fan B, Lin J, Wang F, Zheng J (2020) Sensitive and simultaneous detection of different pathogens by surface-enhanced Raman scattering based on aptamer and Raman reporter co-mediated gold tags. Sens Actuat B: Chem 317:128182

    Article  CAS  Google Scholar 

  39. Li J, Wu T, Wang C, Tu J, Song X, Shao Y, Wang C, Qi K, Xiao R (2022) Nanogapped Fe3O4@Au surface-enhanced Raman scattering tags for the multiplex detection of bacteria on an immunochromatographic strip. ACS Appl Nano Mater 5(9):12679–12689

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Song Nan of Lanzhou University for her guidance and revision in writing the paper.

Funding

This work was supported by the National Natural Science Foundation of China (22064016), Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2021D14017), Natural Science Foundation of Xinjiang Uygur Autonomous Region (2019D01A69, 2019D01B36), Xinjiang Uygur Autonomous Region University Scientific Research Program Key Project (XJEDU2019I019), and Scientific Research and Development Project of Xinjiang Normal University (XJNUZX202003).

Author information

Authors and Affiliations

Authors

Contributions

Fang Mi: conceptualization, formal analysis, investigation, data curation, writing—original draft. Ming Guan: writing, review and editing; supervision; project administration; funding acquisition. Ying Wang: formal analysis, conceptualization. Guotong Chen: conceptualization. Pengfei Geng: investigation. Cunming Hu: formal analysis

Corresponding author

Correspondence to Ming Guan.

Ethics declarations

Conflict of interest

The authors no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mi, F., Guan, M., Wang, Y. et al. Integration of three non-interfering SERS probes combined with ConA-functionalized magnetic nanoparticles for extraction and detection of multiple foodborne pathogens. Microchim Acta 190, 103 (2023). https://doi.org/10.1007/s00604-023-05676-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05676-4

Keywords

Navigation