Skip to main content
Log in

Denatured bovine serum albumin hydrogel–based electrochemical biosensors for detection of IgG

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An antifouling sensing surface was constructed by crosslinking two-dimensional nanomaterial MXene with bovine serum albumin (BSA) denatured by urea previously. The immunoglobulin G (IgG) capture peptide was then modified to the surface to construct a highly selective antifouling electrochemical biosensor. Due to the large specific surface area and good electrical conductivity of MXene, the sensitivity of the biosensor is significantly enhanced. The biosensor at a working potential of around − 0.18 V (vs. Ag/AgCl) provides a wide linear detection range (0.1 ng/mL to 10 µg/mL) for IgG with a limit of detection of 23 pg/mL (3σ/k). The result is consistent with that obtained from the commercial enzyme-linked immunosorbent kit. Compared with BSA, which is usually used as a passivator or blocker for biosensing platforms, the hydrogel formed through the peptide chain obtained from BSA with good hydrophilicity can provide a better antifouling sensing surface to resist nonspecific adsorption. The prepared biosensor can quantitatively detect the concentration of IgG in complex human serum with high sensitivity. Thus, the antifouling sensing surface constructed without expensive antifouling materials and complex process is expected to develop as a variety of electrochemical biosensors and used for the clinical testing of biomarkers.

An antifouling sensing surface was constructed by crosslinking two-dimensional nanomaterial MXene with bovine serum albumin (BSA) denatured by urea previously. The immunoglobulin G (IgG) capture peptide was then modified to the surface to construct a highly selective antifouling electrochemical biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H (2020) Recent trends in electrochemical sensors for vital biomedical markers using hybrid nanostructured materials. Adv Sci (Weinh) 7(13):1902980

    Article  CAS  PubMed Central  Google Scholar 

  2. Singh P, Pandey SK, Singh J, Srivastava S, Sachan S, Singh SK (2016) Biomedical perspective of electrochemical nanobiosensor. Nanomicro Lett 8(3):193–203

    PubMed  Google Scholar 

  3. Cesewski E, Johnson BN (2020) Electrochemical biosensors for pathogen detection. Biosens Bioelectron 159:112214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perez D, Orozco J (2022) Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Mikrochim Acta 189(3):127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh A, Sharma A, Ahmed A, Sundramoorthy AK, Furukawa H, Arya S, Khosla A (2021) Recent advances in electrochemical biosensors: applications, challenges, and future scope. Biosensors (Basel) 11(9):336

    Article  CAS  Google Scholar 

  6. Jiang C, Wang G, Hein R, Liu N, Luo X, Davis JJ (2020) Antifouling strategies for selective in vitro and in vivo sensing. Chem Rev 120(8):3852–3889

    Article  CAS  PubMed  Google Scholar 

  7. Liu S, Guo WW (2018) Anti-biofouling and healable materials: preparation, mechanisms, and biomedical applications. Adv Func Mater 28(41):1800596

    Article  Google Scholar 

  8. Uen T, Kushiro K, Hibino H, Takai M (2020) Surface functionalization of carbon-based sensors with biocompatible polymer to enable electrochemical measurement in protein-rich environment. Sens Actuators B Chem 309:127758

    Article  CAS  Google Scholar 

  9. Liu X, Li Y, He L, Feng Y, Tan H, Chen X, Yang W (2021) Simultaneous detection of multiple neuroendocrine tumor markers in patient serum with an ultrasensitive and antifouling electrochemical immunosensor. Biosens Bioelectron 194:113603

    Article  CAS  PubMed  Google Scholar 

  10. Xu Z, Han R, Liu N, Gao F, Luo X (2020) Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sens Actuators B Chem 319:128253

    Article  CAS  Google Scholar 

  11. Fan B, Fan Q, Cui M, Wu T, Wang J, Ma H, Wei Q (2019) Photoelectrochemical biosensor for sensitive detection of soluble CD44 based on the facile construction of a poly(ethylene glycol)/hyaluronic acid hybrid antifouling interface. ACS Appl Mater Interfaces 11(27):24764–24770

    Article  CAS  PubMed  Google Scholar 

  12. Goda T, Miyahara Y (2019) Electrodeposition of zwitterionic PEDOT films for conducting and antifouling surfaces. Langmuir 35(5):1126–1133

    Article  CAS  PubMed  Google Scholar 

  13. Nowinski AK, Sun F, White AD, Keefe AJ, Jiang S (2012) Sequence, structure, and function of peptide self-assembled monolayers. J Am Chem Soc 134(13):6000–6005

    Article  CAS  PubMed  Google Scholar 

  14. Xu Y, Wang Z, Ding C, Luo X (2020) Ratiometric antifouling electrochemiluminescence biosensor based on bi-functional peptides and low toxic quantum dots. Sens Actuators B Chem 322:128613

    Article  CAS  Google Scholar 

  15. Song Z, Ma Y, Chen M, Ambrosi A, Ding C, Luo X (2021) Electrochemical biosensor with enhanced antifouling capability for COVID-19 nucleic acid detection in complex biological media. Anal Chem 93(14):5963–5971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang G, Han R, Li Q, Han Y, Luo X (2020) Electrochemical biosensors capable of detecting biomarkers in human serum with unique long-term antifouling abilities based on designed multifunctional peptides. Anal Chem 92(10):7186–7193

    Article  CAS  PubMed  Google Scholar 

  17. Chen M, Han R, Wang W, Li Y, Luo X (2021) Antifouling aptasensor based on self-assembled loop-closed peptides with enhanced stability for CA125 assay in complex biofluids. Anal Chem 93(40):13555–13563

    Article  CAS  PubMed  Google Scholar 

  18. Xu Y, Wang X, Ding C, Luo X (2021) Ratiometric antifouling electrochemical biosensors based on multifunctional peptides and MXene loaded with Au nanoparticles and methylene blue. ACS Appl Mater Interfaces 13(17):20388–20396

    Article  CAS  PubMed  Google Scholar 

  19. Song Z, Chen M, Ding C, Luo X (2020) Designed three-in-one peptides with anchoring, antifouling, and recognizing capabilities for highly sensitive and low-fouling electrochemical sensing in complex biological media. Anal Chem 92(8):5795–5802

    Article  CAS  PubMed  Google Scholar 

  20. Farghaly AA, Khan RK, Collinson MM (2018) Biofouling-resistant platinum bimetallic alloys. ACS Appl Mater Interfaces 10(25):21103–21112

    Article  CAS  PubMed  Google Scholar 

  21. Khan RK, Silva TA, Fatibello‐Filho O, Collinson MM, Farghaly AA (2022) Nanoporous Pt(Au) alloys for the enhanced, non‐enzymatic detection of hydrogen peroxide under biofouling conditions. Electroanalysis 34:1–10

  22. Yang D (2022) Recent advances in hydrogels. Chem Mater 34(5):1987–1989

    Article  CAS  Google Scholar 

  23. Basavalingappa V, Guterman T, Tang Y, Nir S, Lei J, Chakraborty P, Schnaider L, Reches M, Wei G, Gazit E (2019) Expanding the functional scope of the Fmoc-diphenylalanine hydrogelator by introducing a rigidifying and chemically active urea backbone modification. Adv Sci (Weinh) 6(12):1900218

    Article  Google Scholar 

  24. Chen B, Wu P, Liang L, Zhao C, Wang Z, He L, Zhang R, Xu N (2021) Inhibited effect of an RGD peptide hydrogel on the expression of beta1-integrin, FAK, and Akt in Tenon’s capsule fibroblasts. J Biomed Mater Res B Appl Biomater 109(11):1857–1865

    Article  CAS  PubMed  Google Scholar 

  25. Wang W, Han R, Chen M, Luo X (2021) Antifouling peptide hydrogel based electrochemical biosensors for highly sensitive detection of cancer biomarker HER2 in human serum. Anal Chem 93(19):7355–7361

    Article  CAS  PubMed  Google Scholar 

  26. Dhanjai SA, Kalambate PK, Mugo SM, Kamau P, Chen J, Jain R (2019) Polymer hydrogel interfaces in electrochemical sensing strategies: a review. TrAC Trends Anal Chem 118:488–501

    Article  CAS  Google Scholar 

  27. Guo L, Ma WB, Wang Y, Song XZ, Ma J, Han XD, Tao XY, Guo LT, Fan HL, Liu ZS, Zhu YB, Wei XY (2020) A chemically crosslinked hydrogel electrolyte based all-in-one flexible supercapacitor with superior performance. J Alloy Compd 843:155895

    Article  CAS  Google Scholar 

  28. Li Y, Han R, Chen M, Zhang L, Wang G, Luo X (2021) Bovine serum albumin-cross-linked polyaniline nanowires for ultralow fouling and highly sensitive electrochemical protein quantification in human serum samples. Anal Chem 93(9):4326–4333

    Article  CAS  PubMed  Google Scholar 

  29. Tian L, Zhang Y, Wang L, Geng Q, Liu D, Duan L, Wang Y, Cui J (2020) Ratiometric dual signal-enhancing-based electrochemical biosensor for ultrasensitive kanamycin detection. ACS Appl Mater Interfaces 12(47):52713–52720

    Article  CAS  PubMed  Google Scholar 

  30. Rahmati Z, Roushani M, Hosseini H, Choobin H (2021) Electrochemical immunosensor with Cu2O nanocube coating for detection of SARS-CoV-2 spike protein. Mikrochim Acta 188(3):105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Han C, Guo W (2020) Fluorescent noble metal nanoclusters loaded protein hydrogel exhibiting anti-biofouling and self-healing properties for electrochemiluminescence biosensing applications. Small 16(45):e2002621

    Article  PubMed  Google Scholar 

  32. Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L, Sin S, Gogotsi Y (2017) Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29(18):7633–7644

    Article  CAS  Google Scholar 

  33. Li S, Yuan C, Chen J, Chen D, Chen Z, Chen W, Yan S, Hu P, Xue J, Li R, Zheng K, Huang M (2019) Nanoparticle binding to urokinase receptor on cancer cell surface triggers nanoparticle disintegration and cargo release. Theranostics 9(3):884–899

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zhang J, Dong S, Guan L, Zhang D, Huang T (2021) Metal composite oxides Bi2MoO6/IL membrane as matrix for constructing ultrasensitive electrochemical immunosensor. Anal Bioanal Chem 413(4):1173–1183

    Article  CAS  PubMed  Google Scholar 

  35. Shore A, Mazzochette Z, Mugweru A (2015) Mixed valence Mn, La, Sr-oxide based magnetic nanoparticles coated with silica nanoparticles for use in an electrochemical immunosensor for IgG. Microchim Acta 183(1):475–483

    Article  Google Scholar 

  36. Liu N, Hui N, Davis JJ, Luo X (2018) Low fouling protein detection in complex biological media supported by a designed multifunctional peptide. ACS Sens 3(6):1210–1216

    Article  CAS  PubMed  Google Scholar 

  37. Huang Y, Wen Y, Baryeh K, Takalkar S, Lund M, Zhang X, Liu G (2017) Magnetized carbon nanotubes for visual detection of proteins directly in whole blood. Anal Chim Acta 993:79–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wu Q, Song D, Zhang D, Sun Y (2016) An enhanced SPR immunosensing platform for human IgG based on the use of silver nanocubes and carboxy-functionalized graphene oxide. Microchim Acta 183(7):2177–2184

    Article  CAS  Google Scholar 

  39. Shin MH, Hong W, Sa Y, Chen L, Jung Y-J, Wang X, Zhao B, Jung YM (2014) Multiple detection of proteins by SERS-based immunoassay with core shell magnetic gold nanoparticles. Vib Spectrosc 72:44–49

    Article  CAS  Google Scholar 

Download references

Funding

The authors received the support of the National Natural Science Foundation of China (22074074), the Natural Science Foundation of Shandong Province (ZR2020MB065), and the Major Scientific and Technological Innovation Project of Shandong Province (2021ZDSYS30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caifeng Ding.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1988 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Hou, Q. & Ding, C. Denatured bovine serum albumin hydrogel–based electrochemical biosensors for detection of IgG. Microchim Acta 189, 400 (2022). https://doi.org/10.1007/s00604-022-05499-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05499-9

Keywords

Navigation