Skip to main content
Log in

Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A facile and effective approach of fabricating oxidized multiwalled carbon nanotube/glassy carbon electrode (OMWCNT/GCE) is herein reported. The OMWCNT/GCE was prepared by electrochemical oxidation method in basic media (0.5 mol L−1 NaOH solution) and used as a sensor for simultaneous determination of dopamine (DA) and doxorubicin (DOX). Scanning electron microscopy, energy dispersive X-ray spectroscopy and cyclic voltammetry were used for characterization and performance study of the OMWCNT/GCE. The modified electrode exhibited good electrocatalytic properties toward the oxidation of DA and DOX. Peaks potential difference of 240 mV between DA and DOX was large enough to determine DA and DOX individually and simultaneously. Square wave voltammetry (SWV) was used for the simultaneous determination of DA and DOX in their binary mixture. Under the optimum conditions, the linear concentration dependences of SW peak current responses were observed for DA and DOX in the concentration ranges of 0.03–55 μmol L−1 and 0.04–90 μmol L−1, respectively. The detection limits (S/N = 3) were 8.5 × 10−3 μmol L−1, and 9.4 × 10−3 μmol L−1 for DA and DOX, respectively. The analytical utility of OMWCNT/GCE was also successfully demonstrated for the simultaneous determination of DA and DOX in human blood serum and urine samples.

Fabrication of new oxidized multiwalled carbon nanotube/glassy carbon electrode for simultaneous determination of dopamine and doxorubicin

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhu X, Liang Y, Zuo X, Hu R, Xiao X, Nan J. Novel water-soluble multi-nanopore graphene modified glassy carbon electrode for simultaneous determination of dopamine and uric acid in the presence of ascorbic acid. Electrochim Acta. 2014;143:366–73.

  2. Atta NF, Ali SM, El-Ads EH, Galal A. Nano-perovskite carbon paste composite electrode for the simultaneous determination of dopamine, ascorbic acid and uric acid. Electrochim Acta. 2014;128:16–24.

    Article  CAS  Google Scholar 

  3. Noroozifar M, Khorasani-Motlagh M, Hassani Nadiki H, Hadavi MS, Foroughi MM. Modified fluorine-doped tin oxide electrode with inorganic ruthenium red dye-multiwalled carbon nanotubes for simultaneous determination of a dopamine, uric acid, and tryptophan. Sens Actuat. 2014;B204:333–41.

    Article  Google Scholar 

  4. Kim B, Son S, Lee K, Yang H, Kwak J. Dopamine detection using the selective and spontaneous formation of electrocatalytic poly(dopamine) films on indium–tin oxide electrodes. Electroanalysis. 2012;24:993–6.

    Article  CAS  Google Scholar 

  5. Babaei A, Yousefi A, Afrasiabi M, Shabanian M. A sensitive simultaneous determination of dopamine, acetaminophen and indomethacin on a glassy carbon electrode coated with a new composite of MCM-41 molecular sieve/nickel hydroxide nanoparticles/multiwalled carbon nanotubes. J Electroanal Chem. 2015;740:28–36.

    Article  CAS  Google Scholar 

  6. Jiang G, Gu X, Jiang G, Chen T, Zhan W, Tian S. Application of a mercapto-terminated binuclear Cu(II) complex modified Au electrode to improve the sensitivity and selectivity for dopamine detection. Sens Actuat. 2015;B209:122–30.

    Article  Google Scholar 

  7. Ricciarello R, Pichini S, Pacifici R, Altieri I, Pellegrini M, Fattorossi A, et al. Simultaneous determination of epirubicin, doxorubicin and their principal metabolites in human plasma by high-performance liquid chromatography and electrochemical detection. J Chromatogr B. 1998;707:219–25.

    Article  CAS  Google Scholar 

  8. Rezaei B, Saghebdoust M, Mohamadi Sorkhe A, Majidi N. Generation of a doxorubicin immunosensor based on a specific monoclonal antibody-nano gold-modified electrode. Electrochim Acta. 2011;56:5702–6.

    Article  CAS  Google Scholar 

  9. Vajdle O, Zbiljić J, Tasić B, Jović D, Guzsvány V, Djordjevic A. Voltammetric behavior of doxorubicin at a renewable silver-amalgam film electrode and its determination in human urine. Electrochim Acta. 2014;132:49–57.

    Article  CAS  Google Scholar 

  10. Fei J, Wen X, Zhang Y, Yi L, Chen X, Cao H. Voltammetric determination of trace doxorubicin at a nano-titania/nafion composite film modified electrode in the presence of cetyltrimethyl ammonium bromide. Microchim Acta. 2009;164:85–91.

    Article  CAS  Google Scholar 

  11. Ray MR, Lakshmi C, Deb C, Ray C, Lahiri T. Modulatory effect of dopamine on doxorubicin-induced myelosuppression. Comp Haematol Int. 2000;10:212–20.

    Article  CAS  Google Scholar 

  12. Sarkar C, Chakroborty D, Chowdhury UR, Dasgupta PS, Basu S. Dopamine increases the efficacy of anticancer drugs in breast and colon cancer preclinical models. Clin Cancer Res. 2008;14:2502–10.

    Article  CAS  Google Scholar 

  13. Song P, Mabrouk OS, Hershey ND, Kennedy RT. In vivo neurochemical monitoring using benzoyl chloride derivatization and liquid chromatography-mass spectrometry. Anal Chem. 2012;84:412–9.

    Article  CAS  Google Scholar 

  14. Arnold RD, Slack JE, Straubinger RM. Quantification of doxorubicin and metabolites in rat plasma and small volume tissue samples by liquid chromatography/electrospray tandem mass spectroscopy. J Chromatogr B Analyt Technol Biomed Life Sci. 2004;808:141–52.

    Article  CAS  Google Scholar 

  15. Liu YM, Wang CQ, Mu HB, Cao JT, Zheng YL. Determination of catecholamines by CE with direct chemiluminescence detection. Electrophoresis. 2007;28:1937–41.

    Article  CAS  Google Scholar 

  16. Anderson AB, Ciriacks CM, Fuller KM, Arriaga EA. Distribution of zeptomole abundant doxorubicin metabolites in subcellular fractions by capillaryelectrophoresis with laser induced fluorescence detection. Anal Chem. 2003;75:8–15.

    Article  CAS  Google Scholar 

  17. Huang H, Gao Y, Shi FP, Wang GN, Shah SM, Su XG. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer–enzyme hybrid system. Analyst. 2012;137:1481–6.

    Article  CAS  Google Scholar 

  18. Liu Y, Danielsson B. Rapid high throughput assay for fluorimetric detection of doxorubicin—application of nucleic acid–dye bioprobe. Anal Chim Acta. 2007;587:47–51.

    Article  CAS  Google Scholar 

  19. Yang YJ, Li W. CTAB functionalized grapheme oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron. 2014;56:300–6.

    Article  CAS  Google Scholar 

  20. Rodthongkum N, Ruecha N, Rangkupan R, Vachet RW, Chailapakul O. Graphene-loaded nanofiber-modified electrodes for the ultrasensitive determination of dopamine. Anal Chim Acta. 2013;804:84–91.

    Article  CAS  Google Scholar 

  21. Vacek J, Havran L, Fojta M. The reduction of doxorubicin at a mercury electrode and monitoring its interaction with DNA using constant current chronopotentiometry. Collect Czech Chem Commun. 2009;74:1727–38.

    Article  CAS  Google Scholar 

  22. Jemelková Z, Zima J, Barek J. Voltammetric and amperometric determination of doxorubicin using carbon paste electrodes. Collect Czech Chem Commun. 2009;74:1503–15.

    Article  Google Scholar 

  23. Rauf S, Gooding JJ, Akhtar K, Ghauri MA, Rahman M, Anwar MA, et al. Electrochemical approach of anticancer drugs–DNA interaction. J Pharm Biomed Anal. 2005;37:205–17.

    Article  CAS  Google Scholar 

  24. Madrakian T, Haghshenas E, Afkhami A. Simultaneous determination of tyrosine, acetaminophen and ascorbic acid using gold nanoparticles/multiwalled carbon nanotube/glassy carbon electrode by differential pulse voltammetric method. Sens Actuators B. 2014;193:451–60.

    Article  CAS  Google Scholar 

  25. Razmi H, Azadbakht A. Electrochemical characteristics of dopamine oxidation at palladium hexacyanoferrate film, electroless plated on aluminum electrode. Electrochim Acta. 2005;50:2193–201.

    Article  CAS  Google Scholar 

  26. Zhang R, Jin GD, Chen D, Hu XY. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly (acid chrome blue K) modified glassy carbon electrode. Sens Actuators B. 2009;138:174–81.

    Article  CAS  Google Scholar 

  27. Masheter AT, Abiman P, Wildgoose GG, Wong E, Xiao L, Rees NV, et al. Investigating the reactive sites and the anomalously large changes in surface pKa values of chemically modified carbon nanotubes of different morphologies. J Mater Chem. 2007;17:2616–26.

    Article  CAS  Google Scholar 

  28. Noroozifar M, Khorasani-Motlagh M, Akbaria R, Parizi MB. Simultaneous and sensitive determination of a quaternary mixture of AA, DA, UA and Trp using a modified GCE by iron ion-doped natrolite zeolite-multiwall carbon nanotube. Biosens Bioelectron. 2011;28:56–63.

    Article  CAS  Google Scholar 

  29. Madrakian T, Haghshenas E, Ahmadi M, Afkhami A. Construction a magneto carbon paste electrode using synthesized molecularly imprinted magnetic nanospheres for selective and sensitive determination of mefenamic acid in some real samples. Biosens Bioelectron. 2015;68:712–8.

    Article  CAS  Google Scholar 

  30. Fang B, Feng YH, Wang GF, Zhang CH, Gu AX, Liu M. A uric acid sensor based on electrodeposition of nickel hexacyanoferrate nanoparticles on an electrode modified with multi-walled carbon nanotubes. Microchim Acta. 2011;173:27–32.

    Article  CAS  Google Scholar 

  31. Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, et al. Chemical oxidation of multiwalled carbon nanotubes. Carbon. 2008;46:833–40.

    Article  CAS  Google Scholar 

  32. Thiagarajan S, Tsai TH, Chen SM. Easy modification of glassy carbon electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. Biosens Bioelectron. 2009;24:2712–5.

    Article  CAS  Google Scholar 

  33. Temoçin Z. Modification of glassy carbon electrode in basic medium by electrochemical treatment for simultaneous determination of dopamine, ascorbic acid and uric acid. Sens Actuat. 2013;B176:796–802.

    Article  Google Scholar 

  34. Zhao Q, Bao L, Luo Q, Zhang M, Lin Y, Pang D, et al. Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. Biosens Bioelectron. 2009;24:3003–7.

    Article  CAS  Google Scholar 

  35. Li N, Guo L, Jiang J, Yang X. Interaction of echinomycin with guanine: electrochemistry and spectroscopy studies. Biophys Chem. 2004;111:259–65.

    Article  CAS  Google Scholar 

  36. Doepke A, Han C, Back T, Cho W, Dionysiou DD, Shanov V, et al. Analysis of the electrochemical oxidation of multiwalled carbon nanotube tower electrodes in sodium hydroxide. Electroanalysis. 2012;24:1–8.

    Article  Google Scholar 

  37. Ahmadi M, Madrakian T, Afkhami A. Solid phase extraction of doxorubicin using molecularly imprinted polymer coated magnetite nanospheres prior to its spectrofluorometric determination. New J Chem. 2015;39:163–71.

    Article  CAS  Google Scholar 

  38. Nerimetla R, Walgama C, Ramanathan R, Krishnan S. Correlating the electrochemical kinetics of myoglobin films to pH dependent meat color. Electroanalysis. 2014;26:675–8.

    Article  CAS  Google Scholar 

  39. Walgama C, Krishnan S. Tuning the electrocatalytic efficiency of heme-protein films by controlled immobilization on pyrene-functionalized nanostructure electrodes. J Electrochem Soc. 2014;161:H47–52.

    Article  CAS  Google Scholar 

  40. Suresha R, Giribabu K, Manigandan R, Praveen Kumar S, Munusamy S, Muthamizh S, et al. New electrochemical sensor based on Ni-doped V2O5 nanoplates modified glassy carbon electrode for selective determination of dopamine at nanomolar level. Sens Actuators B. 2014;202:440–7.

    Article  Google Scholar 

  41. Komorsky-Lovrić Š. Redox kinetics of adriamycin adsorbed on the surface of graphite and mercury electrodes. Bioelectrochem. 2006;69:82–7.

    Article  Google Scholar 

  42. Oliveira-Brett AM, Piedade JAP, Chiorcea AM. Anodic voltammetry and AFM imaging of picomoles of adriamycin adsorbed onto carbon surfaces. J Electroanal Chem. 2002;538:267–76.

    Article  Google Scholar 

  43. Getoa A, Pita M, De Laceya AL, Tessema M, Admassie S. Electrochemical determination of berberine at a multi-walled carbon nanotubes-modified glassy carbon electrode. Sens Actuators B. 2013;183:96–101.

  44. Thomas T, Mascarenhasa RJ, Kumara Swamy BE, Martis P, Mekhalif Z, Sherigara BS. Multi-walled carbon nanotube/poly (glycine) modified carbon paste electrode for the determination of dopamine in biological fluids and pharmaceuticals. Colloids Surf B. 2013;110:458–65.

    Article  CAS  Google Scholar 

  45. Cai W, Lai T, Du H, Ye J. Electrochemical determination of ascorbic acid, dopamine and uric acid based on an exfoliated graphite paper electrode: a high performance flexible sensor. Sens Actuators B. 2014;193:492–500.

    Article  CAS  Google Scholar 

  46. Wang X, Zhang F, Xia J, Wang Z, Bi S, Xia L, et al. Modification of electrode surface with covalently functionalized graphene oxide by l-tyrosine for determination of dopamine. J Electroanal Chem. 2015;738:203–8.

    Article  CAS  Google Scholar 

  47. Medeirosa RA, Matos R, Benchikh A, Saidani B, Debiemme-Chouvy C, Deslouisc C, et al. Amorphous carbon nitride as an alternative electrode material in electroanalysis: simultaneous determination of dopamine and ascorbic acid. Anal Chim Acta. 2013;797:30–9.

    Article  Google Scholar 

  48. Hahn Y, Lee HY. Electrochemical behavior and square wave voltammetric determination of doxorubicin hydrochloride. Arch Pharm Res. 2004;27:31–4.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Bu-Ali Sina University Research Council and Center of Exellent in Department of Environmentally Friendly Method for Chemical Synthesis (CEDEFMCS) for providing support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayyebeh Madrakian.

Ethics declarations

All samples were collected from a healthy male volunteer with informed consent and all experiments were performed in compliance with the relevant laws and institutional guidelines.

Conflict of interest

The authors have declared no conflict of interest.

Ethical approval

The research followed the tenets of the Declaration of Helsinki and the use of these blood and urine samples for research was approved by the Ethics Committee of Behbood Hospital, Hamedan, Iran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghshenas, E., Madrakian, T. & Afkhami, A. Electrochemically oxidized multiwalled carbon nanotube/glassy carbon electrode as a probe for simultaneous determination of dopamine and doxorubicin in biological samples. Anal Bioanal Chem 408, 2577–2586 (2016). https://doi.org/10.1007/s00216-016-9361-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9361-y

Keywords

Navigation