Skip to main content
Log in

Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly negatively charged gold nanoparticles (AuNPs) are shown to have strong simulated oxidase activity and effectively boosted the oxidation of enzyme substrate 3,3′,5,5′-tetramethylbenzidine (TMB) by hexavalent chromium ion Cr(VI), resulting in the formation of oxidation product with blue color. Based on this, a facile colorimetric assay was developed to detect Cr(VI) at a range 0.008~0.156 mg/L with r = 0.996. The detection limit was estimated to be 0.52 μg/L. In addition, the colorimetric assay showed high selectivity against 28 other interfering ions. It was performed at room temperature and required about half an hour including the preparation of AuNPs. The assay was successfully applied to the determination of Cr(VI) in spiked water samples, and recoveries in the range 95.00–105.40% were obtained. This work paves a way for design of high performance sensor based on highly active nanozymes and also provides an extremely practical analytical tool for the monitoring of Cr(VI) in the environment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Edition F (2011) Guidelines for drinking-water quality. WHO Chron 38:104–108

    Google Scholar 

  2. Hao C, Du P, Chen J, Hu SH, Li SQ, Liu HL (2010) Separation and preconcentration system based on ultrasonic probe-assisted ionic liquid dispersive liquid-liquid microextraction for determination trace amount of chromium(VI) by electrothermal atomic absorption spectrometry. Talanta 81(1–2):176–179

    Google Scholar 

  3. Zhan MH, Yu HM, Li LH, Nguyen DT, Chen W (2019) Detection of hexavalent chromium by copper sulfide nanocomposites. Anal Chem 91(3):2058–2065

    Article  CAS  PubMed  Google Scholar 

  4. Unceta N, Astorkia M, Abrego Z, Gómez-Caballero A, Goicolea MA, Barrio RJ (2016) A novel strategy for Cr(III) and Cr(VI) analysis in dietary supplements by speciated isotope dilution mass spectrometry. Talanta 154:255–262

    Article  CAS  PubMed  Google Scholar 

  5. Miyake Y, Tokumura M, Iwazaki Y, Wang Q, Amagai T, Horii Y, Otsuka H, Tanikawa N, Kobayashi T, Oguchi M (2017) Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method. J Chromatogr A 1502:24–29

    Article  CAS  PubMed  Google Scholar 

  6. Mädler S, Todd A, Skip Kingston HM, Pamuku M, Sun FR, Tat C, Tooley RJ, Switzer TA, Furdui VI (2016) Ultra-trace level speciated isotope dilution measurement of Cr(VI) using ion chromatography tandem mass spectrometry in environmental waters. Talanta 156–157:104–111

    Article  CAS  PubMed  Google Scholar 

  7. Motaghedifarda MH, Pourmortazavib SM, Mirsadeghic S (2020) Selective and sensitive detection of Cr(VI) pollution in waste water via polyaniline/sulfated zirconium dioxide/multi walled carbon nanotubes nanocomposite based electrochemical sensor. Sensors Actuators B Chem 327:128882

    Article  CAS  Google Scholar 

  8. Prabhakaran DC, Ramamurthy PC, Sivry Y, Subramanian S (2020) Electrochemical detection of Cr(VI) and Cr(III) ions present in aqueous solutions using bio-modified carbon paste electrode: a voltammetric study. Int J Environ An Ch 21:1–21

  9. Bu XF, Zhang ZY, Zhang LX, Peng L, Wu JW, Zhang HQ, Tian Y (2018) Highly sensitive SERS determination of chromium(VI) in water based on carbimazole functionalized alginate-protected silver nanoparticles. Sensors Actuators B Chem 273:1519–1524

    Article  CAS  Google Scholar 

  10. Qian JN, Huang N, Lu QY, Wen C, Xia JB (2020) A novel D-A-D-typed rod-like fluorescent material for efficient Fe(III) and Cr(VI) detection: synthesis, structure and properties. Sensors Actuators B Chem 320:128377

    Article  CAS  Google Scholar 

  11. Yang YZ, Chen XM, Wang YY, Wu M, Ma YN, Yang XD (2020) A novel fluorescent test papers based on carbon dots for selective and sensitive detection of Cr (VI). Front Chem 8:1130

    Google Scholar 

  12. Bilgic A, Cimen A (2020) A highly sensitive and selective ON-OFF fluorescent sensor based on functionalized magnetite nanoparticles for detection of Cr(VI) metal ions in the aqueous medium. J Mol Liq 312:113398

    Article  CAS  Google Scholar 

  13. Kim D, Choi E, Lee C, Choi Y, Kim H, Yu T, Piao Y (2019) Highly sensitive and selective visual detection of Cr(VI) ions based on etching of silver-coated gold nanorods. Nano Converg 6(1):34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang T, Zhang ST, Liu J, Li J, Lu XQ (2020) Visual chemosensor for hexavalent chromium via a controlled strategy for signal amplification in water. Anal Chem 92(4):3426–3433

    Article  CAS  PubMed  Google Scholar 

  15. He SZ, Lin X, Liang H, Xiao FB, Li FF, Liu C, Fan PF, Yang SY, Liu Y (2019) Colorimetric detection of Cr(VI) using silver nanoparticles functionalized with PVP. Anal Methods 11:5819–5825

    Article  CAS  Google Scholar 

  16. Ghayyem S, Swaidan A, Barras A, Dolci M, Faridbod F, Szunerits S, Boukherroub R (2021) Colorimetric detection of chromium (VI) ion using poly(N-phenylglycine) nanoparticles acting as a peroxidase mimetic catalyst. Talanta 226:122082

    Article  CAS  PubMed  Google Scholar 

  17. Zhang XH, Liu W, Li XM, Zhang Z, Shan DL, Xia H, Zhang ST, Lu XQ (2018) Ultrahigh selective colorimetric quantification of chromium(VI) ions based on gold amalgam catalyst oxidoreductase-like activity in water. Anal Chem 90(24):14309–14315

    Article  CAS  PubMed  Google Scholar 

  18. Xue QS, Li X, Peng YX, Liu P, Peng HB, Niu XH (2020) Polyethylenimine-stabilized silver nanoclusters act as an oxidoreductase mimic for colorimetric determination of chromium(VI). Microchim Acta 187(5):263

    Article  CAS  Google Scholar 

  19. Alula MT, Madingwane ML (2020) Colorimetric quantification of chromium (VI) ions based on oxidoreductase-like activity of Fe3O4. Sensors Actuators B Chem 324:128726

    Article  CAS  Google Scholar 

  20. Wu XY, Xu YB, Dong YJ, Jiang X, Zhu NN (2013) Colorimetric determination of hexavalent chromium with ascorbic acid capped silver nanoparticles. Anal Methods 5:560–565

    Article  CAS  Google Scholar 

  21. Zhuang YT, Chen S, Jiang R, Yu YL, Wang JH (2019) Ultrasensitive colorimetric chromium chemosensor based on dye color switching under the Cr(VI)-stimulated Au NPs catalytic activity. Anal Chem 91(8):5346–5353

    Article  CAS  PubMed  Google Scholar 

  22. Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodifed gold nanoparticles. P Natl Acad Sci USA 101(39):14036–14039

    Article  CAS  Google Scholar 

  23. Qi YY, Song DD, Chen YT (2021) Colorimetric oligonucleotide-based sensor for ultra-low Hg2+ in contaminated environmental medium: convenience, sensitivity and mechanism. Sci Total Environ 766:142579

    Article  CAS  PubMed  Google Scholar 

  24. Jv Y, Li BX, Cao R (2010) Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem Commun 46(42):8017–8019

    Article  CAS  Google Scholar 

  25. Chen HY, Qiu QM, Sharif S, Ying SN, Wang YX, Ying YB (2018) Solution-phase synthesis of platinum nanoparticle-decorated metal-organic framework hybrid nanomaterials as biomimetic nanoenzymes for biosensing applications. ACS Appl Mater Inter 10(28):24108–24115

    Article  CAS  Google Scholar 

  26. Peng YG, Yu XP, Yin WQ, Dong WF, Peng Y, Wang T (2019) Colorimetric assay using mesoporous Fe-doped graphitic carbon nitride as a peroxidase mimetic for the determination of hydrogen peroxide and glucose. ACS Applied Bio Materials 3(1):59–67

    Article  CAS  PubMed  Google Scholar 

  27. Cui YS, Lai X, Liang B, Liang Y, Sun ST, Wang LG (2020) Polyethyleneimine-stabilized platinum nanoparticles as peroxidase mimic for colorimetric detection of glucose. ACS Omega 5(12):6800–6808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Qi YY, Chen YT, He JH, Gao X (2020) Highly sensitive and simple colorimetric assay of hydrogen peroxide and glucose in human serum via the smart synergistic catalytic mechanism. Spectrochim Acta A 234:118233

    Article  CAS  Google Scholar 

  29. Zhou XB, Wang MK, Chen JY, Xie XL, Su XG (2020) Peroxidase-like activity of Fe-N-C single-atom nanozyme based colorimetric detection of galactose. Anal Chim Acta 1128:72–79

    Article  CAS  PubMed  Google Scholar 

  30. Nghia NN, Huy BT, Lee Y (2019) Colorimetric detection of chromium(VI) using graphene oxide nanoparticles acting as a peroxidase mimetic catalyst and 8-hydroxyquinoline as an inhibitor. Microchim Acta 186(1):36

    Article  CAS  Google Scholar 

  31. Wang Y, Liang RP, Qiu JD (2020) Nanoceria-templated metal organic frameworks with oxidase-mimicking activity boosted by hexavalent chromium. Anal Chem 92(2):2339–2346

    Article  CAS  PubMed  Google Scholar 

  32. Mao Y, Gao SJ, Yao LL, Wang L, Qu H, Wu Y, Chen Y, Zheng L (2021) Single-atom nanozyme enabled fast and highly sensitive colorimetric detection of Cr(VI). J Hazard Mater 408:124898

    Article  CAS  PubMed  Google Scholar 

  33. Qi YY, Li BX (2011) A sensitive, label-free, aptamer-based biosensor using a gold nanoparticle-initiated chemiluminescence system. Chem Eur J 17(5):1642–1648

    Article  CAS  PubMed  Google Scholar 

  34. Zhang ZF, Cui H, Lai CZ, Liu LJ (2005) Gold nanoparticle-catalyzed luminol chemiluminescence and its analytical applications. Anal Chem 77(10):3324–3329

    Article  CAS  PubMed  Google Scholar 

  35. Qi YY, Xiu FR, Yu GD, Huang LL, Li BX (2017) Simple and rapid chemiluminescence aptasensor for Hg2+ in contaminated samples: a new signal amplification mechanism. Biosens Bioelectron 87:439–446

    Article  CAS  PubMed  Google Scholar 

  36. Sui CX, Liu YF, Zhang WH, Li PA, Zhang D (2014) CdTe-CdSe nanocrystals capped with dimethylaminoethanethiol as ultrasensitive fluorescent probes for chromium(VI). Microchim Acta 181:347–353

    Article  CAS  Google Scholar 

  37. Huang K, Yang H, Zhou ZG, Yu MX, Li FY, Gao X, Yi T, Huang CH (2008) Multisignal chemosensor for Cr3+ and its application in bioimaging. Org Lett 10:2557–2560

    Article  CAS  PubMed  Google Scholar 

  38. Wu Y, Zheng J, Li Z, Zhao Y, Zhang Y (2009) A novel reagentless amperometric immunosensor based on gold nanoparticles/TMB/Nafion-modified electrode. Biosens Bioelectron 24(5):1389–1393

    Article  CAS  PubMed  Google Scholar 

  39. Fierro S, Watanabe T, Akai K, Einaga Y (2012) Highly sensitive detection of Cr6+ on boron doped diamond electrodes. Electrochim Acta 82:9–11

    Article  CAS  Google Scholar 

  40. Qi YY, Chen YT, Xiu FR, Hou JX (2020) An aptamer-based colorimetric sensing of acetamiprid in environmental samples: convenience, sensitivity and practicability. Sensors Actuators B Chem 304:127359

    Article  CAS  Google Scholar 

  41. Chang YQ, Zhang Z, Hao JH, Yang WS, Tang JL (2016) BSA-stabilized Au clusters as peroxidase mimetic for colorimetric detection of Ag+. Sensors Actuators B Chem 232:692–697

    Article  CAS  Google Scholar 

  42. Li ZX, Feng KZ, Zhang W, Ma M, Gu N, Zhang Y (2018) Catalytic mechanism and application of nanozymes. Chin Sci Bull 63(21):2128–2139

    Article  Google Scholar 

  43. Wang XX, Liu GM, Qi YX, Yuan Y, Gao J, Luo XL, Yang T (2019) Embedded Au nanoparticles-based ratiometric electrochemical sensing strategy for sensitive and reliable detection of copper ions. Anal Chem 91(18):12006–12013

    Article  CAS  PubMed  Google Scholar 

  44. Gao LZ, Zhuang J, Nie L, Zhang JB, Zhang Y, Gu N, Wang TH, Feng J, Yang DL, Perrett S, Yan XY (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  PubMed  Google Scholar 

  45. Josephy PD, Eling T, Mason RP (1982) The horseradish peroxidase-catalyzed oxidation of 3,5,3’,5’-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem 257(7):3669–3675

    Article  CAS  PubMed  Google Scholar 

  46. Burns C, Spendel WU, Puckett S, Pacey GE (2006) Solution ionic strength effect on gold nanoparticle solution color transition. Talanta 69(4):873–876

    Article  CAS  PubMed  Google Scholar 

  47. Koutsoulis NP, Giokas DL, Vlessidis AG, Tsogas GZ (2010) Alkaline earth metal effect on the size and color transition of citrate-capped gold nanoparticles and analytical implications in periodate-luminol chemiluminescence. Anal Chim Acta 669(1–2):45–52

    Article  CAS  PubMed  Google Scholar 

  48. Chinnapongse SL, MacCuspie RI, Hackley VA (2011) Persistence of singly dispersed silver nanoparticles in natural freshwaters, synthetic seawater, and simulated estuarine waters. Sci Total Environ 409(12):2443–2450

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported financially by the National Natural Science Foundation of China (No. 21605018) and the Natural Science Basic Research Project of Shaanxi Province of China (No. 2020JM-528 and No. 2021JZ-52).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingying Qi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 654 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Ma, J., Xiu, FR. et al. Determination of Cr(VI) based on the peroxidase mimetic catalytic activity of citrate-capped gold nanoparticles. Microchim Acta 188, 273 (2021). https://doi.org/10.1007/s00604-021-04942-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04942-7

Keywords

Navigation