Skip to main content

Advertisement

Log in

Graphene-based fluorometric determination of agrD gene transcription in methicillin-resistant Staphylococcus aureus using exonuclease III-aided target recycling and DNA walker cascade amplification

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A graphene-based bioassay is described for the fluorometric determination of agrD gene transcription (mRNA) in methicillin-resistant Staphylococcus aureus (MRSA). This method includes exonuclease III (Exo III)-assisted target recycling and DNA walker cascade amplification. Hairpin1 (HP1) consists of a capture probe (CP) and DNA walker sequence. In the absence of the target, 5′-amino modified hairpin2 (HP2) labeled with carboxyfluorescein (FAM) at its 3′ terminus is covalently linked to graphene via 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC/NHS) catalysis, resulting in the quenching of the FAM signal. The stem-loop structure of HP1 opens when the target is added to form partially complementary DNA/RNA hybrids. Exo III then initiates the target recycling process by cleaving the CP and DNA walker cascade reaction by automatic walking. This iterative reaction causes the FAM to dissociate from the graphene, and the fluorescence can be measured at excitation/emission wavelengths of 480/514 nm. Therefore, the target can be assayed by fluorescence. This method has a linear relationship with the concentration of target within the range 1 fM to 100 pM with a detection limit of 1 fM. The developed bioassay was used to monitor biofilm formation and investigate the mechanism of drug action with satisfactory results.

Graphical abstract

Schematic representation of the graphene-based fluorescent bioassay for agrD gene transcription in methicillin-resistant Staphylococcus aureus by using exonuclease III-aided target recycling and DNA walker cascade amplification

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xia J, Gao J, Kokudo N, Hasegawa K, Tang W (2013) Methicillin-resistant Staphylococcus aureus antibiotic resistance and virulence. Biosci Trends 7(3):113–121

    PubMed  Google Scholar 

  2. Davis JS, Van Hal S, Tong SY (2015) Combination antibiotic treatment of serious methicillin-resistant Staphylococcus aureus infections. Semin Respir Crit Care Med 36(1):3–16

    Article  CAS  PubMed  Google Scholar 

  3. Sowash MG, Uhlemann AC (2014) Community-associated methicillin-resistant Staphylococcus aureus case studies. Methods Mol Biol 1085:25–69

    Article  PubMed  PubMed Central  Google Scholar 

  4. Tsouklidis N, Kumar R, Heindl SE, Soni R, Khan S (2020) Understanding the fight against resistance: hospital-acquired methicillin-resistant Staphylococcus aureus vs. community-acquired methicillin-resistant Staphylococcus aureus. Cureus 12(6):e8867

    PubMed  PubMed Central  Google Scholar 

  5. Oyama T, Miyazaki M, Yoshimura M, Takata T, Ohjimi H, Jimi S (2016) Biofilm-forming methicillin-resistant Staphylococcus aureus survive in Kupffer cells and exhibit high virulence in mice. Toxins (Basel) 8(7):198

    Article  Google Scholar 

  6. Kai K (2016) Bacterial quorum sensing in symbiotic and pathogenic relationships with hosts. Biosci Biotechnol Biochem 82(3):363–371

    Article  Google Scholar 

  7. Hawver LA, Jung SA, Ng WL (2016) Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiol Rev 40(5):738–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tahmasebi H, Dehbashi S, Arabestani MR (2019) Association between the accessory gene regulator (agr) locus and the presence of superantigen genes in clinical isolates of methicillin-resistant Staphylococcus aureus. BMC Res Notes 12(1):130

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thoendel M, Horswill AR (2009) Identification of Staphylococcus aureus AgrD residues required for autoinducing peptide biosynthesis. J Biol Chem 284(33):21828–21838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Blevins T (2017) Northern blotting techniques for small RNAs. Methods Mol Biol 1456:141–162

    Article  CAS  PubMed  Google Scholar 

  11. Wada M, Lkhagvadorj E, Bian L, Wang C, Chiba Y, Nagata S, Shimizu T, Yamashiro Y, Asahara T, Nomoto K (2010) Quantitative reverse transcription-PCR assay for the rapid detection of methicillin-resistant Staphylococcus aureus. J Appl Microbiol 108(3):779–788

    Article  CAS  PubMed  Google Scholar 

  12. Tjong V, Yu H, Hucknall A, Chilkoti A (2013) Direct fluorescence detection of RNA on microarrays by surface-initiated enzymatic polymerization. Anal Chem 85(1):426–433

    Article  CAS  PubMed  Google Scholar 

  13. Wang G, Fu Y, Ren Z, Huang J, Best S, Li X, Han G (2018) Upconversion nanocrystal ‘armoured’ silica fibres with superior photoluminescence for miRNA detection. Chem Commun (Camb) 54(49):6324–6327

    Article  CAS  Google Scholar 

  14. Wang Y, Fan X, Yin HS, Zhou YL, Yang Y, Ai SY (2020) Photoelectrochemical immunosensor for methylated RNA detection based on WS2 and poly(U) polymerase-triggered signal amplification. Microchim Acta 187(11):596

    Article  CAS  Google Scholar 

  15. Zhang H, Liu Y, Fu X, Yuan LH, Zhu ZJ (2015) Microfluidic bead-based assay for microRNAs using quantum dots as labels and enzymatic amplification. Microchim Acta 182(3–4):661–669

    Article  CAS  Google Scholar 

  16. Wang Q, Liu RJ, Yang XH, Wang KM, Zhu JQ, He LL, Li Q (2016) Surface plasmon resonance biosensor for enzyme-free amplified microRNA detection based on gold nanoparticles and DNA supersandwich. Sensors Actuators B Chem 223:613–620

    Article  CAS  Google Scholar 

  17. Jin L, Qiao J, Chen J, Xu N, Wu M (2020) Combination of area controllable sensing surface and bipolar electrode-electrochemiluminescence approach for the detection of tetracycline. Talanta 208:120404

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Wang Y, Lau C, Chen G, Lu J (2018) Hybridization-initiated exonuclease resistance strategy for simultaneous detection of multiple microRNAs. Talanta 190:248–254

    Article  CAS  PubMed  Google Scholar 

  19. Ning Y, Chen SQ, Hu J, Li L, Cheng LJ, Lu FG (2020) Fluorometric determination of agrA gene transcription in methicillin-resistant Staphylococcus aureus with a graphene oxide-based assay using strand-displacement polymerization recycling and hybridization chain reaction. Microchim Acta 187(7):372

    Article  CAS  Google Scholar 

  20. Tang Y, Liu M, Zhao Z, Li Q, Liang X, Tian J, Zhao S (2019) Fluorometric determination of microRNA-122 by using ExoIII-aided recycling amplification and polythymine induced formation of copper nanoparticles. Microchim Acta 186(3):133

    Article  Google Scholar 

  21. Xu M, Gao Z, Wei Q, Chen G, Tang D (2016) Label-free hairpin DNA-scaffolded silver nanoclusters for fluorescent detection of Hg2+ using exonuclease III-assisted target recycling amplification. Biosens Bioelectron 79:411–415

    Article  CAS  PubMed  Google Scholar 

  22. Bao T, Shu H, Wen W, Zhang X, Wang S (2015) A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy. Anal Chim Acta 862:64–69

    Article  CAS  PubMed  Google Scholar 

  23. Pei Q, Song X, Liu S, Wang J, Leng X, Cui X, Yu J, Wang Y, Huang J (2019) A facile signal-on electrochemical DNA sensing platform for ultrasensitive detection of pathogenic bacteria based on Exo III-assisted autonomous multiple-cycle amplification. Analyst 144(9):3023–3029

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Luo ZW, Sun CJ, Huang ZJ, Zhou C, Yin S, Duan YX, Li YX (2019) Research progress of DNA walker and its recent applications in biosensor. Trends Anal Chem 120:115626

    Article  CAS  Google Scholar 

  25. Wang DF, Vietz C, Schröder T, Acuna G, Lalkens B, Tinnefeld P (2017) A DNA walker as a fluorescence signal amplifier. Nano Lett 17(9):5368–5374

    Article  CAS  PubMed  Google Scholar 

  26. Škugor M, Valero J, Murayama K, Centola M, Asanuma H, Famulok M (2019) Orthogonally photocontrolled non-autonomous DNA walker. Angew Chem Int Ed Eng 58(21):6948–6951

    Article  Google Scholar 

  27. Omabegho T, Sha RJ, Seeman NC (2009) A bipedal DNA Brownian motor with coordinated legs. Science 324(5923):67–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou H, Duan SY, Huang J, He FJ (2020) Ultrasensitive electrochemical biosensor for Pseudomonas aeruginosa assay based on rolling circle amplification-assisted multipedal DNA walker. Chem Commun (Camb) 56(46):6273–6276

    Article  CAS  Google Scholar 

  29. Li D, Luo ZW, An HF, Yang EL, Wu MF, Huang ZJ, Duan YX (2020) Poly-adenine regulated DNA density on AuNPs to construct efficient DNA walker for microRNA-21 detection. Talanta 217:121056

    Article  CAS  PubMed  Google Scholar 

  30. He BS, Dong XZ (2021) Nb.BbvCI powered DNA walking machine-based Zr-MOFs-labeled electrochemical aptasensor using Pt@AuNRs/Fe-MOFs/PEI-rGO as electrode modification material for patulin detection. Chem Eng J 405:126642

    Article  CAS  Google Scholar 

  31. Li W, Rong YC, Wang JY, Li TZ, Wang ZG (2019) MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 169:112605

    Article  Google Scholar 

  32. Zhu X, Liu Y, Li P, Nie Z, Li J (2016) Applications of graphene and its derivatives in intracellular biosensing and bioimaging. Analyst 141(15):4541–4553

    Article  CAS  PubMed  Google Scholar 

  33. Ning Y, Zou L, Gao Q, Hu J, Lu FG (2018) Graphene oxide-based fluorometric determination of methicillin-resistant Staphylococcus aureus by using target-triggered chain reaction and deoxyribonuclease-assisted recycling. Microchim Acta 185(3):183

    Article  Google Scholar 

  34. Jiang HY, Li FR, Li W, Lu XD, Ling K (2018) Multiplexed determination of intracellular messenger RNA by using a graphene oxide nanoprobe modified with target-recognizing fluorescent oligonucleotides. Microchim Acta 185(12):552

    Article  Google Scholar 

  35. Wang W, Kong T, Zhang D, Zhang J, Cheng G (2015) Label-free microRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal Chem 91(18):11840–11847

    Google Scholar 

  36. Xiong HT, Zheng XW (2017) Electrochemiluminescence based determination of micro-RNA using target-guided assembly of gold nanoparticles on an electrode modified with Nafion, carbon nanotubes and polyvinylpyrrolidone. Microchim Acta 184(6):1781–1789

    Article  CAS  Google Scholar 

  37. Wu H, Wang HY, Liu YL, Wu J, Zou P (2019) Fluorometric determination of microRNA by using target-triggered cascade signal amplification and DNA-templated silver nanoclusters. Microchim Acta 186:669

    Article  CAS  Google Scholar 

  38. Liu L, Jiang S, Wang L, Zhang Z, Xie G (2015) Direct detection of microRNA-126 at a femtomolar level using a glassy carbon electrode modified with chitosan, graphene sheets, and a poly(amidoamine) dendrimer composite with gold and silver nanoclusters. Microchim Acta 182:77–84

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangguo Lu.

Ethics declarations

Conflict of interest

The author(s) declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOC 4335 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, Y., Wang, X., Hu, J. et al. Graphene-based fluorometric determination of agrD gene transcription in methicillin-resistant Staphylococcus aureus using exonuclease III-aided target recycling and DNA walker cascade amplification. Microchim Acta 188, 269 (2021). https://doi.org/10.1007/s00604-021-04933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-04933-8

Keywords

Navigation