Skip to main content
Log in

Bio-metal-organic frameworks for molecular recognition and sorbent extraction of hydrophilic vitamins followed by their determination using HPLC-UV

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A bio-metal-organic framework (bio-MOF) derived from the amino acid L-serine has been prepared in bulk form and evaluated as sorbent for the molecular recognition and extraction of B-vitamins. The functional pores of bio-MOF exhibit high amounts of hydroxyl groups jointly directing other supramolecular host-guest interactions thus providing the recognition of B-vitamins in fruit juices and energy drinks. Single-crystal X-ray diffraction studies reveal the specific B-vitamin binding sites and the existence of multiple hydrogen bonds between these target molecules and the framework. It offered unique snapshots to accomplish an efficient capture of these solutes in complex aqueous matrices. Four B-vitamins (thiamin, nicotinic acid, nicotinamide, and pyridoxine) were investigated. They were eluted from the sorbent with phosphate buffer at pH 7 and analyzed by HPLC with UV detection. The sorbent was compared with commercial C18 cartridges. Following the procedure, acceptable reproducibility (RSD values < 14%) was achieved, and the detection limits were in the range 0.4 to 1.4 ng mL−1. The method was applied to the analysis of energy drink and juice samples and the recoveries were between 75 and 123% in spiked beverage samples.

A bio-MOF as SPE sorbent was prepared and applied to the extraction of B-vitamins in fruit juices and energy drinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nouar F, Eubank JF, Bousquet T, Wojtas L, Zaworotko MJ, Eddaoudi M (2008) Supermolecular building blocks (SBBs) for the design and synthesis of highly porous metal-organic frameworks. J Am Chem Soc 130(6):1833–1835. https://doi.org/10.1021/ja710123s

    Article  CAS  PubMed  Google Scholar 

  2. Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37(1):191–214. https://doi.org/10.1039/B618320B

    Article  PubMed  Google Scholar 

  3. Safaei M, Foroughi MM, Ebrahimpoor N, Jahani S, Omidi A, Khatami M (2019) A review on metal-organic frameworks: synthesis and applications. TrAC Trends Anal Chem 118:401–425. https://doi.org/10.1016/j.trac.2019.06.007

    Article  CAS  Google Scholar 

  4. Li H, Wang K, Sun Y, Lollar CT, Li J, Zhou HC (2018) Recent advances in gas storage and separation using metal-organic frameworks. Mater Today 21(2):108–121. https://doi.org/10.1016/j.mattod.2017.07.006

    Article  CAS  Google Scholar 

  5. Liu C, Yu LQ, Zhao YT, Lv YK (2018) Recent advances in metal-organic frameworks for adsorption of common aromatic pollutants. Microchim Acta 185:342. https://doi.org/10.1007/s00604-018-2879-2

    Article  CAS  Google Scholar 

  6. Zhang Q, Yu J, Cai J, Song R, Cui Y, Yang Y, Chen B, Qian G (2014) A porous metal-organic framework with –COOH groups for highly efficient pollutant removal. Chem Comm 50(92):14455–14458. https://doi.org/10.1039/c4cc06648k

    Article  CAS  PubMed  Google Scholar 

  7. Zhao Y (2016) Emerging applications of metal–organic frameworks and covalent organic frameworks. Chem Mater 28(22):8079–8081. https://doi.org/10.1021/acs.chemmater.6b04677

    Article  CAS  Google Scholar 

  8. Lin RB, Xiang S, Xing H, Zhou W, Chen B (2019) Exploration of porous metal–organic frameworks for gas separation and purification. Coord Chem Rev 378:87–103. https://doi.org/10.1016/j.ccr.2017.09.027

    Article  CAS  Google Scholar 

  9. Zhao X, Wang Y, Li DS, Bu X, Feng P (2018) Metal-Organic Frameworks for Separation. Adv Mater 30(37):1705189. https://doi.org/10.1002/adma.201705189

    Article  CAS  Google Scholar 

  10. Maya F, Cabello CP, Figuerola A, Palomino GT, Cerdà V (2019) Immobilization of metal–organic frameworks on supports for sample preparation and chromatographic separation. Chromatographia 82(1):361–375. https://doi.org/10.1007/s10337-018-3616-z

    Article  CAS  Google Scholar 

  11. Gu ZY, Yang CX, Chang NA, Yan XP (2012) Metal–organic frameworks for analytical chemistry: from sample collection to chromatographic separation. Acc Chem Res 45(5):734–745. https://doi.org/10.1021/ar2002599

    Article  CAS  PubMed  Google Scholar 

  12. Bautista PR, Fernandez IP, Pasan J, Pino V (2016) Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings?–a review. Anal Chim Acta 939:26–41. https://doi.org/10.1016/j.aca.2016.07.047

    Article  CAS  Google Scholar 

  13. McKinlay AC, Morris RE, Horcajada P, Férey G, Gref R, Couvreur P, Serre C (2010) BioMOFs: metal–organic frameworks for biological and medical applications. Angew Chem Int Ed 49(36):6260–6266. https://doi.org/10.1002/anie.201000048

    Article  CAS  Google Scholar 

  14. Cai H, Huang YL, Li D (2019) Biological metal–organic frameworks: structures, host–guest chemistry and bio-applications. Coord Chem Rev 378:207–221. https://doi.org/10.1016/j.ccr.2017.12.003

    Article  CAS  Google Scholar 

  15. Mon M, Qu X, Soria JF, Carreño IP, Escribano AS, Fernandez EVR, Jansen CJ, Armentano D, Pardo E (2017) Fine-tuning of the confined space in microporous metal–organic frameworks for efficient mercury removal. J Mater Chem A 5(38):20120–20125. https://doi.org/10.1039/C7TA06199D

    Article  CAS  Google Scholar 

  16. Ikezoe Y, Washino G, Uemura T, Kitagawa S, Matsui H (2012) Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat Mater 11(12):1081–1085. https://doi.org/10.1038/nmat3461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sun RWY, Zhang M, Li D, Zhang ZF, Cai H, Li M, Xian YJ, Ng SW, Wong AST (2015) Dinuclear gold (I) pyrrolidinedithiocarbamato complex: cytotoxic and antimigratory activities on cancer cells and the use of metal–organic framework. Chem Eur J 21(51):18534–18538. https://doi.org/10.1002/chem.201503656

    Article  CAS  PubMed  Google Scholar 

  18. Ma Y, Su H, Kuang X, Li X, Zhang T, Tang B (2014) Heterogeneous nano metal–organic framework fluorescence probe for highly selective and sensitive detection of hydrogen sulfide in living cells. Anal Chem 86(22):11459–11463. https://doi.org/10.1021/ac503622n

    Article  CAS  PubMed  Google Scholar 

  19. Zhao M, Wu CD (2017) Biomimetic activation of molecular oxygen with a combined metalloporphyrinic framework and co-catalyst platform. ChemCatChem 9(7):1192–1196. https://doi.org/10.1002/cctc.201601606

    Article  CAS  Google Scholar 

  20. Yang J, Trickett CA, Alahmadi SB, Alshammari AS, Yaghi OM (2017) Calcium l-lactate frameworks as naturally degradable carriers for pesticides. J Am Chem Soc 139(24):8118–8121. https://doi.org/10.1021/jacs.7b04542

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JH, Nong RY, Xie SM, Wang BJ, Ai P, Yuan LM (2017) Homochiral metal-organic frameworks based on amino acid ligands for HPLC separation of enantiomers. Electrophoresis. 38(19):2513–2520. https://doi.org/10.1002/elps.201700122

    Article  CAS  PubMed  Google Scholar 

  22. Sánchez JN, García AIA, Martínez YM, Sanjuán DR, Antypov D, Falco PC, Rosseinsky MJ, Gastaldo CM (2017) Peptide metal–organic frameworks for enantioselective separation of chiral drugs. J Am Chem Soc 139(12):4294–4297. https://doi.org/10.1021/jacs.7b00280

    Article  CAS  Google Scholar 

  23. Mon M, Soria JF, Grancha T, Pérez FRF, Gascon J, Pérez AL, Armentano D, Pardo E (2016) Selective gold recovery and catalysis in a highly flexible methionine-decorated metal–organic framework. J Am Chem Soc 138(25):7864–7867. https://doi.org/10.1021/jacs.6b04635

    Article  CAS  PubMed  Google Scholar 

  24. Stough C, Scholey A, Lloyd J, Spong J, Myers S, Downey LA (2011) The effect of 90 day administration of a high dose vitamin B-complex on work stress. Hum Psychopharm Clin 26(7):470–476. https://doi.org/10.1002/hup.1229

    Article  CAS  Google Scholar 

  25. Heckman MA, Sherry K, De Mejia EG (2010) Energy drinks: an assessment of their market size, consumer demographics, ingredient profile, functionality, and regulations in the United States. Compr Rev Food Sci F 9(3):303–317. https://doi.org/10.1111/j.1541-4337.2010.00111.x

    Article  CAS  Google Scholar 

  26. Eiroa AA, Canle M, Cancellieri VL, Cerdà V (2016) Solid-phase extraction of organic compounds: a critical review (part I). TrAC-Trends Anal Chem 80:641–654. https://doi.org/10.1016/j.trac.2015.08.015

    Article  CAS  Google Scholar 

  27. Fatima Z, Jin X, Zou Y, Kaw HY, Quinto M, Li D (2019) Recent trends in analytical methods for water-soluble vitamins. J Chromatogr A 1606:360245. https://doi.org/10.1016/j.chroma.2019.05.025

    Article  CAS  PubMed  Google Scholar 

  28. Heal KR, Carlson LT, Devol AH, Armbrust EV, Moffett JW, Stahl DA, Ingalls AE (2014) Determination of four forms of vitamin B12 and other B vitamins in seawater by liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom 28(22):2398–2404. https://doi.org/10.1002/rcm.7040

    Article  CAS  PubMed  Google Scholar 

  29. Mon M, Bruno R, Soria JF, Bartella L, Donna LD, Talia M, Lappano R, Maggiolini M, Armentano D, Pardo E (2018) Crystallographic snapshots of host–guest interactions in drugs@ metal–organic frameworks: towards mimicking molecular recognition processes. Mat Horiz 5(4):683–690. https://doi.org/10.1039/C8MH00302E

    Article  CAS  Google Scholar 

  30. Ostovan A, Ghaedi M, Arabi M, Yang Q, Li J, Chen L (2018) Hydrophilic multitemplate molecularly imprinted biopolymers based on a green synthesis strategy for determination of B-family vitamins. ACS Appl Mater Inter 10(4):4140–4150. https://doi.org/10.1021/acsami.7b17500

    Article  CAS  Google Scholar 

  31. Chatzimichalakis PF, Samanidou VF, Verpoorte R, Papadoyannis IN (2004) Development of a validated HPLC method for the determination of B-complex vitamins in pharmaceuticals and biological fluids after solid phase extraction. J Sep Sci 27(14):1181–1188. https://doi.org/10.1002/jssc.200401858

    Article  CAS  PubMed  Google Scholar 

  32. Ekinci R, Kadakal Ç (2005) Determination of seven water-soluble vitamins in tarhana, a traditional Turkish cereal food, by high-performance liquid chromatography. Acta Chromatogr 15:289

    CAS  Google Scholar 

  33. Chamkouri N, Khodadoust S, Ghalavandi F (2015) Solid-phase extraction coupled with HPLC-DAD for determination of B vitamin concentrations in halophytes. J Chromatogr Sci 53(10):1720–1724. https://doi.org/10.1093/chromsci/bmv080

    Article  CAS  PubMed  Google Scholar 

  34. Cubarsí MG, Sárraga C, Clariana M, Regueiro JAG, Castellari M (2011) Analysis of vitamin B1 in dry-cured sausages by hydrophilic interaction liquid chromatography (HILIC) and diode array detection. Meat Sci 87(3):234–238. https://doi.org/10.1016/j.meatsci.2010.10.017

    Article  CAS  Google Scholar 

  35. Fan B, You J, Suo Y, Qian C (2018) A novel and sensitive method for determining vitamin B3 and B7 by pre-column derivatization and high-performance liquid chromatography method with fluorescence detection. PLoS One 13(6). https://doi.org/10.1371/journal.pone.0198102

Download references

Funding

This work was supported by the Generalitat Valenciana (Project PROMETEO/2016/145), the Ministry of Science, Innovation and Universities (Spain) (Project RTI2018-095536-B-I00), the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and the MINECO (Spain) (Projects CTQ2016–75671–P and Excellence Unit “Maria de Maeztu” MDM–2015–0538). H. M. Pérez-Cejuela thanks the MINECO for an FPU grant for PhD studies. Thanks are also extended to the “2019 Post–doctoral Junior Leader–Retaining Fellowship, la Caixa Foundation (ID100010434 and fellowship code LCF/BQ/PR19/11700011” (J. F.–S.), the Fondazione CARIPLO / “Economia Circolare: ricerca per un futuro sostenibile” 2019, Project code: 2019–2090, MOCA (D. A.), the Diamond Light Source for awarded beamtime and provision of synchrotron radiation facility and Drs. David Allan and Sarah Barnett for their assistance at I19 beamline (proposal number CY22411-1). E.P. acknowledges the financial support of the European Research Council under the European Union’s Horizon 2020 research and innovation programme / ERC Grant Agreement No 814804, MOF–reactors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emilio Pardo or José Manuel Herrero-Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1.77 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Cejuela, H.M., Mon, M., Ferrando-Soria, J. et al. Bio-metal-organic frameworks for molecular recognition and sorbent extraction of hydrophilic vitamins followed by their determination using HPLC-UV. Microchim Acta 187, 201 (2020). https://doi.org/10.1007/s00604-020-4185-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-4185-z

Keywords

Navigation